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Summary In this work, a numerical model is developed for modelling coupled Stokes flow 
and mass transport in the case of large density variations. The Stokes flow equations are 
solved using the Crouzeix-Raviart (CR) approximation. For the transport equation, the 
Discontinuous Galerkin (DG) method is used for the discretization of the advection equation 
and combined with the symmetric Multi-Point Flux Approximation (MPFA) method for the 
discretization of the diffusion equation. A semi-analytical solution, obtained by expanding the 
salt concentration and the stream function in double Fourier series, is developed for a 
synthetic problem of salt water intrusion in a fracture and used for the validation of the 
numerical model. 

1. INTRODUCTION 

Fluid flow and transport trough fractures are important in environmental and petroleum 
engineering [1]. In this paper, we develop an accurate numerical model to simulate transport 
of salt water through cavities or fractures. In this case, the flow equations and the solute 
transport equations are coupled by the state equations linking density variations to mass 
fraction. In this work, the flow through cavities is considered steady and laminar and the 
inertial forces in the flow field are assumed to be negligibly small compared with the viscous 
and pressure forces. Therefore, the free-flow is governed by the Stokes equation [2, 3, 4, 5, 6, 
7, and 8]. Different methods can be used for the discretization of the Stokes equation [9]. We 
use in this work the Crouzeix-Raviart (CR) approximation based on the nonconforming 
piecewise linear finite elements for the velocity and the piecewise constant finite elements for 
the pressure. For the transport equation, the Discontinuous Galerkin (DG) method is used to 
discretize the advection equation and combined with the symmetric Multipoint Flux 
Approximation (MPFA) method for the discretization of the diffusion equation [10]. The DG 
method allows to obtain a robust and accurate numerical scheme for problems involving sharp 
fronts [11]. On the other hand, the MPFA method is locally conservative and handles general 
irregular grids [12, 13, 14]. The MPFA and the DG discretization can be gathered into one 
system matrix without operator splitting [10]. Flow and transport equations are solved 
sequentially using a non iterative scheme with proper time management based on local 
truncation error control as in [15]. To validate the numerical code, we develop a semi-
analytical solution for a synthetic problem of saltwater intrusion trough a cavity. This problem 
is obtained by replacing the confined aquifer (flow governed by Darcy flow) in the well 
known Henry [16] saltwater intrusion problem by a cavity (flow governed by Stokes free-
flow). As with the standard Henry problem [16], we develop a semi-analytical solution by 
expanding the concentration and the stream function in a double set of Fourier series. 
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2. MATHEMATICAL MODELS 

Single-phase steady incompressible flow through a fracture is governed by the Navier-Stokes 
equation: 
 ( ) 2u u u g. pρ μ ρ∇ +∇ − ∇ =  (1) 
and the continuity equation:   
 0u.∇ =  (2) 
where ρ  is the fluid density, u  is the velocity vector, p  is the pressure, g  is gravity, and μ  
is the dynamic viscosity.  
We assume that the flow through the fracture is sufficiently slow to consider the inertial forces 
in the flow field (the first nonlinear term in equation(1)) negligibly small compared with the 
viscous and pressure forces. Therefore, in this case, the free-flow is governed by the following 
Stokes equations [17, 18, 19]: 
 2u gp μ ρ∇ − ∇ =  (3) 

 0u.∇ =  (4) 

In this work, three kinds of boundary conditions are used with this system:  
o The velocity u  is prescribed on the boundary;  
o Free outflow boundary condition ( ) 0u η ηpμ ∇ − =  with η  the outward normal vector 

to the boundary; 
o The pressure p  is prescribed at the boundary. Note that in this case, we set also the 

velocity components in the tangential direction to zero on the same boundary as used 
in [20, 21, 22, 23, 24]. This condition is named Normal flow/Pressure or straight-out 
boundary condition. 

Solute transport in the free-flow region can be described by the following convection-
diffusion equation:  

 2uC . C D C
t

∂
∂

+ ∇ = ∇  (5) 

where C  is the solute mass fraction and D  is the molecular diffusion coefficient. 
Flow and transport equations are coupled by the linear state equation linking density to mass 
fraction:  
 ( )0 1 0 Cρ ρ ρ ρ= + −  (6) 

with 1ρ  the density of the injected fluid and 0ρ  the freshwater density. 
The boundary conditions for the transport equation are of Dirichlet type ( C  is fixed) or a 
convective boundary type ( 0ηC∂ ∂ =  where η  is the direction normal to the boundary).  

3. STOKES FLOW DISCRETIZATION 

The system (3)-(4) cannot be discretized with the same order for pressure and velocity 
approximations due to stability conditions. Otherwise some sort of stabilization is added to the 
mixed formulation [25]. To avoid these difficulties, we use the non-conforming Crouzeix-
Raviart (CR) elements for the velocity approximation in combination with constant pressure 
per element, since they satisfy the Babuska-Brezzi condition [26, 27, 28]. This condition is 
central for ensuring that the final linear system to solve is non-singular [9]. Moreover, the 
non-conforming Crouzeix-Raviart (CR) element has local mass conservation properties [29] 
and leads to a relatively small number of unknowns due to the low-order shape functions. The 
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CR element is used in many problems such as the Darcy-Stokes problem [30], the Stokes 
problem [31] and the elasticity problem [32, 33]. The CR element gives a simple stable 
optimal order approximation of the Stokes equations [34]. In the following, we recall the main 
stages for the discretization of the Stokes equation with the CR triangular element. 
With the non-conforming finite element method, the degrees of freedom for the velocity 
vector u  are the two component ( )i iu ,v  of u  at the midedge i  facing the node i . Inside the 

element E , we assume a linear variation of the velocity components ( )E Eu ,v  

 E E E E E E
E i i j j k k E i i j j k ku u u u , v v v vϕ ϕ ϕ ϕ ϕ ϕ= + + = + +  (7) 

For an interior edge, the linear interpolation function iϕ  for the velocity is nonzero only on 
the two adjacent elements E  and E′ , where E  is the area of the element E , ix  and iz  are 

the coordinates of the vertex i  of E . The interpolation function E
iϕ  equals 1 on the midedge 

i  and zero on the midedges j  and k  of E . 
The variational formulation of the Stokes equation (3) using the test function iϕ  over the 
domain Ω  writes: 
 ( )u Ι i i. p g zμ ϕ ρ ϕ

Ω Ω

∇ ∇ − = ∇∫ ∫  (8) 

where u∇  is the gradient of the velocity vector u  and Ι  the 2 2×  identity matrix. 
Using Green’s formula,  
 ( ) ( )u Ι η u Ιi i ip . p g zϕ μ μ ϕ ρ ϕ∂Ω

∂Ω Ω Ω

∇ − − ∇ ∇ − = ∇∫ ∫ ∫  (9) 

The first integral contains boundary conditions. It vanishes in case of free-flow boundary or in 
case of an interior edge i . In this last case, equation (9) becomes 
 ( ) ( )u  Ι u  ΙE E' E E

E E i E E i i i
E E E E

. p . p g z g zμ ϕ μ ϕ ρ ϕ ρ ϕ ′
′ ′

′ ′

− ∇ ∇ − − ∇ ∇ − = ∇ + ∇∫ ∫ ∫ ∫  (10) 

Using (7) and (8), we obtain  

 ( )
( )

( )

3

1

3

1

u  Ι

i j i j
ji

jE
E E i Ei

i j i jE
j

j

x x z z u
z

. p P
Ex x x z z v

μμ ϕ =

=

⎛ ⎞
Δ Δ + Δ Δ⎜ ⎟⎛ ⎞Δ ⎜ ⎟− ∇ ∇ − = −⎜ ⎟⎜ ⎟ ⎜ ⎟Δ⎝ ⎠ Δ Δ + Δ Δ⎜ ⎟⎜ ⎟

⎝ ⎠

∑
∫

∑
 (11) 

and 

 ( )
i

E
i E i E i

E

z
g z g z z

x
ρ ϕ ρ

⎛ ⎞Δ
∇ = − ⎜ ⎟⎜ ⎟Δ⎝ ⎠

∫  (12) 

where i
j kx x xΔ = −  and i

k jz z zΔ = − , Ez  and iz  are respectively the z-coordinate of the 
centre of E  and of the midpoint of edge i , Eρ  and Ep  are respectively the mean density and 
pressure over E . 
The finite volume formulation of the continuity equation (4) over the element E  writes: 
 0u

E

.∇ =∫  (13) 

using (7), it becomes 
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 ( )
3

1
0j j

j j
j

z u x v
=

Δ + Δ =∑  (14) 

4. TRANSPORT DISCRETIZATION 

For the transport equation, standard numerical methods, such as standard finite elements or 
finite volumes, are known to generate solution with numerical diffusion and/or non-physical 
oscillations when advection is dominant. These problems can be avoided with DG [35]. 
Indeed, DG leads to a high-resolution scheme for advection that has been proven to be clearly 
superior to the already existing finite element methods [36].  
In this work, the explicit DG method, where fluxes are upwinded using a Riemann solver is 
used to solve the advection equation and combined with the symmetric Multipoint Flux 
Approximation (MPFA) method for the diffusion equation.  
The transport equation (5) is written in the following mixed form 

 ( ) 0u u

u

D

D

C . C .
t

D C

∂
∂

⎧ + ∇ +∇ =⎪
⎨
⎪ = − ∇⎩

 (15) 

The dispersive flux uD  is assumed to vary linearly inside the element E , therefore, 

 1u E
D D, Ei

i
. Q

E ∂∇ = ∑  (16) 

where u ηE
D, Ei D Ei

Ei

Q .∂ ∂
∂

= ∫  is the dispersive flux across the edge Ei∂  of E . 

We use the P1 DG method where the approximate solution ( , )hC tx  is expressed with linear 
basis functions E

iφ  on each element E  as follows: 

 ( ) ( ) ( )
3

1

, | E E
h E i i

i

C t C t φ
=

=∑x x  (17) 

where ( )E
iC t  are the three unknown coefficients corresponding to the degrees of freedom 

which are the average value of the mass fraction defined at the triangle centroid ( )E Ex ,z  and 
its deviations in each space direction [37] with the corresponding interpolation functions:  
 ( ) ( ) ( )1 2 3, 1, , ,  , .  E E E

E Ex z x z x x x z z zφ φ φ= = − = −  (18) 

The variational formulation of (15) over the element E  using E
iφ  as test functions leads to 

(see [10] for details), 
 

 [ ] [ ]

1

,
1 1 13

02
2 2 2

1
3 3 3

3

0
0

E

E
D jE E E

EjE
E E E

E E E
E

dC
Qdt C C C

dCA B C M C M C
dt

C C C
dC
dt

∂

=

⎛ ⎞
⎜ ⎟ ⎡ ⎤
⎜ ⎟ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎢ ⎥
⎜ ⎟ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎡ ⎤= − − +⎜ ⎟ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎢ ⎥
⎜ ⎟ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎜ ⎟ ⎢ ⎥⎣ ⎦⎜ ⎟
⎝ ⎠

∑

∑  (19) 

with,  
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( ) ( )

, ,

N
0
, ,

1

.

, 1 1,..,3

u

E

E E E E
i j j i i j j i

E E
E E

E E E E E EE E
i j E i j i j E i j

E E

A B

Q QM M
E E

φ φ φ φ

λ φ φ λ φ φ∂ ∂
∂ ∂

= ∂ ∂

= = ∇

= = − =
∂ ∂

∫ ∫

∑ ∫ ∫
 

where Ej  is the adjacent element to E such that Ej∂  is the common edge of E  and Ej  and 
.E

E Ej
E

Q∂ ∂
∂

= ∫ uη  the water flux across Ej∂ . The upwind parameter E
Eλ∂  is defined by 

 
1 . 0
0 . 0

EjE
Ej

Ej

if
if

λ ∂
∂

∂

≥⎧
= ⎨ <⎩

u η
u η

 (20) 

5. VALIDATION OF THE DENSITY-COUPLED FLOW TRANSPORT PROBLEM 

5.1 The semi-analytical solution of saltwater intrusion trough a cavity 

To validate the numerical code, a semi-analytical solution is developed for a synthetic 
problem of saltwater intrusion trough a cavity. We consider an idealized rectangular cavity in 
which freshwater enters with a constant flux rate Q  from the left boundary. A hydrostatic 
pressure is prescribed along the right boundary where the concentration is fixed to salt-water 
concentration. The top and the bottom of the domain are impermeable boundaries. The 
saltwater intrudes from the right until an equilibrium with the injected freshwater is reached. 
The Stokes equations (3)-(4) are written in the following form: 

 

2 2

2 2

2 2

2 2

0

0

P u u
x x z

P v v f
z x z

u v
x z

μ

μ

⎧ ⎛ ⎞∂ ∂ ∂
− + + =⎪ ⎜ ⎟∂ ∂ ∂⎝ ⎠⎪
⎪ ⎛ ⎞∂ ∂ ∂⎪− + + =⎨ ⎜ ⎟∂ ∂ ∂⎝ ⎠⎪
⎪∂ ∂

+ =⎪
∂ ∂⎪⎩

  (21) 

where the body forces f  can be written using (6) in the following form, 
 [ ]0 1 0( )f C gρ ρ ρ= + −  (22) 

The last equation in (21) implies the existence of a stream functionφ , such as: 

 u
z
φ∂

=
∂

 and v
x
φ∂

= −
∂

 (23) 

Inserting (23) into (21) leads to: 

 
4 4 4

1 04 2 2 42 ( ) Cg
x x z z z
φ φ φμ ρ ρ

⎡ ⎤∂ ∂ ∂ ∂
+ + = − −⎢ ⎥∂ ∂ ∂ ∂ ∂⎣ ⎦

  (24) 

As in [16, 38], we define the following new variables:  
 x x d′ = , z z d′ = , u u d Q′ = , v v d Q′ = , u zψ′ ′ ′= ∂ ∂ , v xψ′ ′ ′= −∂ ∂ , zψ ψ ′ ′= −  (25) 
where x′ and z′  are non-dimensional coordinates, u′  and v′  are the non-dimensional 
velocities and ψ ′  the non dimensional stream function. 
Using (25), eq (24) leads to: 
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4 4 4

4 2 2 4

12 Ca
x x z z x
ψ ψ ψ

ξ
⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂

+ + = − +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠
 (26) 

with 3
1 0( )

Qa
gd

μ
ρ ρ

=
−

 and L
d

ξ =  the aspect ratio of the domain, where L  is the length and 

d  is the depth of the domain. 
Similarly, the change of variables applied to the mass transport equation (5) (see [16, 38] for 
details) leads to:  

 
2 2

2 2

1 1C C C C Cb
x z z x x z z x

ψ ψ ψ
ξ ξ

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ = − + + +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

 (27) 

with Db
Q

=  and C is now the non-dimensional concentration. 

The stream function and the concentration are represented by double Fourier series of the 
form: 

 ,
1 0

sin( )cos( )m n
m n

xA m z nψ π π
ξ

∞ ∞

= =

=∑∑  (28) 

 ,
0 1

cos( )sin( )r s
r s

xC B r z sπ π
ξ

∞ ∞

= =

=∑∑  (29) 

Substituting these relations into equations (26) and (27), multiplying equation (26) by 

4sin( )cos( )xg z hπ π
ξ

 and equation (27) by 4cos( )sin( )xg z hπ π
ξ

, and integrating over the 

rectangular domain gives an infinite set of algebraic equations for ,g hA  and ,g hB  namely, 

 
2

4 2 2
2 , ,2

0

4( ) ( , ) ( , )g h r h
r

ha A g B hN g r W g hε π ξ
ξ π

∞

=

+ = +∑  (30) 

 
2

2 2
1 , , 1 ,2

0 1

4( ) ( , ) ( , ) ( , )g h g n g s
n s

hb B g A gN h n B SN h s Quad W h gε π ξ ε
ξ π

∞ ∞

= =

+ = + + +∑ ∑  (31) 

Details about the parameters 1 2, , , ,N W Quadε ε , can be found in [16]. 
5.2 Validation of the numerical model 

We consider a synthetic example where the domain is discretized with a regular triangular 
mesh of 3200 elements. The flux at the left (inland) boundary is 2 10 92Q . m s−=  and the 
diffusion coefficient is set to 2 10 046D . m s−= , the densities of freshwater (at the left 
boundary) and saltwater (at the right boundary) are respectively 3

0 1000kg mρ −=  and 
3

1 1015kg mρ −= . To avoid very small values of the parameter a  for which, we cannot obtain 
a converged semi-analytical solution, the viscosity is set to 1 Pa sμ =  in this synthetic 
problem. The corresponding parameters for the analytical solution are  

3
1 0

0.006
( )

Qa
gd

μ
ρ ρ

= =
−

 and 0.05Db
Q

= = . 

To reduce these oscillations, the semi analytical solution is performed with a new truncation 
using 424 coefficients of the Fourier series with 214 terms ( )1..7,0..30A  for the expansion of the 
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stream function and 210 terms ( )0..6,1..30B  for the expansion of the concentration. A good 
agreement is observed between the semi-analytical and numerical results in this case (Figure 
1). These results demonstrate the validity of the numerical model. The developed analytical 
solution can be used for the validation of other numerical codes. 

 
Figure 1: Semi-analytical (dashed lines) and numerical isochlors (solid lines) and numerical 

velocity field for the saltwater intrusion problem through a cavity. The semi-analytical 
solution is calculated using a truncation based on 424 coefficients for the double Fourier 

series. 

6. CONCLUSION  

In this manuscript, we developed an efficient numerical model to simulate transport of 
saltwater through cavities or fractures. In this case, the flow equations and the solute transport 
equations are coupled by the state equations linking density variations to mass fraction. The 
model is developed for a general triangular mesh and uses the CR finite elements for the flow 
discretization, the DG method for advection and the symmetric MPFA method for diffusion.  
The developed model is used for the simulation of a synthetic problem of saltwater intrusion 
trough a cavity. This problem is adapted from the saltwater intrusion problem of Henry [16], 
by replacing the confined aquifer by a cavity. The semi-analytical solution is developed for 
this problem by expanding the stream function and the concentration in double Fourier series. 
The algebraic equations are then solved using the Levenberg-Marquardt algorithm [39]. The 
analytical solution is developed for a new truncation (424 terms). With the new truncation, the 
unphysical oscillations are reduced for the semi-analytical solution and a good agreement is 
observed with the numerical solution. 
 
 



A. Zidane, A. Younes, P. Huggenberger and E. Zechner. 
 

 8

References   
 [1]M. Bayani Cardenas, Donald T. Slottke, Richard A. Ketcham, John M. Sharp Jr., Navier-Stokes 

flow and transport simulations using real fractures shows heavy tailing due to eddies, Geophysical 
Research Letters, Vol.34, L14404, doi:10.1029/2007GL030545, 2007 

[2]G. Beavers and D. Joseph, Boundary conditions at a naturally permeable wall, J. Fluid Mech., 
(1967) 30:197. 

[3]P. Saffman. On the boundary condition at the surface of a porous medium, Studies Appl. Math. 
(1971) 50:93.   

[4]E. Sanchez-Palencia, Non-Homogeneous Media and Vibration Theory, volume 127 of Lecture 
Notes in Physics (1980), Spring-Verlag, Berlin. 

[5]M. Kaviany, Principles of Heat Transfer in Porous Media, Mechanical Engineering Series (1999), 
Springer-Verlag, New York.  

[6]W. Jäger and A. Mikelić, On the interface boundary condition of Beavers, Joseph, and Saffman. 
SIAM J. Appl. Math (2000). 60:1111.  

[7]W. Jäger and A. Mikelić, Asymptotic analysis of the laminar viscous flow over a porous bed. SIAM 
J. Sci. Comput.(2001a) 22:2006.  

[8]T. Arbogast and H.L. Lehr, Homogenization of a Darcy-Stokes system modeling vuggy porous 
media. Comput. Geosci.(2006), 10:291.  

[9]H.P. Langtangen, K. Mardal, R. Winther, Numerical methods for incompressible viscous flow. Adv. 
Water Res. 25 (2002) 1125-1146. 

[10]A. Younes, P. Ackerer, Solving the advection-dispersion equation with Discontinuous Galerkin 
and Multipoint Flux Approximation methods on unstructured meshes. Int. J Numer Methods in 
Fluids. 2008; DOI: 10.1002/fld.1783. 

[11]T. Shuangzhang, A. Shahrouz, A slope limiting procedure in Discontinuous Galerkin finite 
element method for gasdynamics applications. Int. J Numer Analy Modell 2005;2:163-178. 

[12]I. Aavatsmark, An introduction to multipoint flux approximations for quadrilateral grids. Comput 
Geosci (2002);6:404–432. 

[13]I. Aavatsmark , T. Barkve, Ø. Bøe, T. Mannseth, Discretization on non-orthogonal, quadrilateral 
grids for inhomogeneous, anisotropic media. J Comput Phys (1996);127:2–14. 

[14]MF. Wheeler, I. Yotov. A multipoint flux mixed finite element method. SIAM44 2006;5:2082-
2106. 

[15]A. Younes and P. Ackerer, Empirical versus time stepping with embedded error control for 
density-driven flow in porous media, Water Resour. Res.(2010), 46, W01504, 
doi:10.1029/2009WR008229 

[16]H.R. Henry, Effects of dispersion on salt encroachment in coastal aquifers, in Sea Water in 
Coastal Aquifers, U.S. Geol. Surv. Supply Pap., (1964),1613-C, 70 – 84. 

[17]E. G. Flekkøy, T. Rage, U. Oxaal, and J. Feder, Hydrodynamic Irreversibility in Creeping Flow, 
Phys. Rev(1996), PACS numbers: 47.15.Gf, 02.70.Bf, 02.70.Lq, 47.60.+I, VOLUME 77, 
NUMBER 20 

[18]J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics (Prentice Hall Inc., Englewood 
Cliffs, NJ,1965). 

[19]L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon Press, New York, 1987), 2nd ed. 

[20]C. Conca, F. Murat, O. Pironneau, The Stokes and Navier-Stokes equations with boundary 
conditions involving the pressure. Jpn J. Math. 20, 263-318 (1994) 



A. Zidane, A. Younes, P. Huggenberger and E. Zechner. 
 

 9

[21]C. Conca, C. Parés, O. Pironneau, M. Thiriet, Navier-Stokes equations with imposed pressure and 
velocity fluxes. Int. J. Numer. Methods Fluids 20(4), 267-287 (1995) 

[22]P.M. Gresho, R.L. Sani, On pressure boundary conditions for the incompressible Navier-Stokes 
equations. Int. J. Numer. Methods Fluids 7, 1111-1145 (1987) 

[23]W. Jäger and A. Mikelić, On the roughness-induced effective boundary conditions for an 
incompressible viscous flow, J. Differ. Equ. 170, 96-122 (2001b) 

[24]G. Lukaszewicz, On the Navier-Stokes equations in time dependent domains with boundary 
conditions involving the pressure. J. Math. Sci. Univ. Tokyo 4, 529-550 (1997) 

[25]J. Li, Z. Chen, A new local stabilized nonconforming finite element method for the Stokes 
equations, Computing (2008), 82:157-170, doi 10.1007/s00607-008-0001-z 

[26]F. Brezzi, M. Fortin, Mixed and hybrid finite element methods, Berlin: Springer 1991. 

[27]V. Girault, PA. Raviart, Finite element methods for Navier-Stokes equations, Berlin: Springer 
1986 

[28]PM. Gresho, RL. Sani, Incompressible flow and the finite element method, New York: Wiley; 
1998 

[29]E. Bruman, P. Hansbo, A stabilized nonconforming finite element method for incompressible 
flow, Comput. Methods App0 Mech. Eng., vol. 195, num. 23-24, p. 2881-99, (2004). 

[30]E. Bruman, P. Hansbo, Stabilized Crouzeix-Raviart element for the Darcy-Stokes problem, 
Numerical Methods for Partial Differential Equation, 21(5), 986-997 (2005) 

[31]M. Crouzeix, P. Raviart, Conforming and nonconforming finite element methods for solving the 
stationary Stokes equations. RAIRO Sér. Rouge, 7(3), 33-75 (1973) 

[32]P. Hansbo, M.G. Larson, Discontinuous Galerkin and the Crouzeix-Raviart element: application to 
elasticity. ESAIM: Math. Model. Numer. Anal. 37(1), 63-72 (2003) 

[33]P. Hansbo, M.G. Larson, Discontinuous Galerkin methods for incompressible and nearly 
incompressible elasticity by Nitshe’s method. Comput. Methods Appl. Mech. Engrg, 191(17-18), 
1895-1908 (2002) 

[34]D.N. Arnold, On nonconforming linear-constant elements for some variants of the Stokes 
equations, presenta dal s.c. Franco Brezzi nella seduta del 24-6-93. 

[35]P. Siegel, R. Mosé , P. Ackerer, J. Jaffre, Solution of the advection-diffusion equation using a 
combination of discontinuous and mixed finite elements. Int J Numer Meth in Fluids 1997; 24(6): 
595-613.    

[36]DN. Arnold, F. Brezzi, B. Cockburn,LD. Marini, Unified analysis of discontinuous Galerkin 
methods for elliptic problems. SIAM J. Numer. Anal. 2002;5:1749-1779. 

[37]B. Cockburn, S. Hou, CW. Shu, TVB Runge Kutta local projection discontinuous Galerkin finite 
element method for conservative laws III: One dimensional systems, J. Compu.t Phys. 1989;84: 
90-113. 

 [38]G. Segol, Classic Groundwater Simulations Proving and Improving Numerical Models, Prentice-
Hall, Old Tappan, N. J. (1994) 

[39]D.W. Marquardt, An algorithm for least-squares estimation of nonlinear inequalities, SIAM J. 
Appl. Math., (1963) ,11 , 431-441. 

 


