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Summary. The implementation of geostatistical approach to solve inverse problems [8],
such as estimating hydraulic conductivity from measurements of head, is expensive for
problems discretized on fine grids. Dimensionality reduction techniques such as repre-
senting the random field via Karhunen-Loève expansion, are frequently used in such a
context. We show how to combine an efficient method to compute the expansion on an
unstructured grid using Hierarchical matrices and a Gauss-Newton-Krylov approach for
solving the inverse problem. We present preliminary results on a synthetic model problem
arising from Hydraulic tomography.

1 Introduction

Hydraulic tomography is an aquifer characterization approach that uses a joint analysis
of distributed aquifer pressure (head) response data collected during a series of pumping
tests to produce estimates of aquifer variability of properties (for eg. conductivity, specific
storage). A popular method to deal with such problems is the Geostatistical approach.
Performing hydraulic tomography using the Geostatistical approach is a computationally
challenging problem. In this approach, inference is made through the posterior distribu-
tion of the parameters, which is composed of the likelihood of the measurements, which
controls the misfit of the data and the second term, the prior distribution, which usually
controls the structure of the solution. The second term, is typically enforced via a dense
covariance matrix, which can be computationally expensive to perform operations such
as matrix-vector and matrix-matrix products.

The bottleneck for scalability of computational algorithms are two-fold: 1) Working
with the covariance matrix, corresponding to a discretized spatial random variable, that
is large and dense, and 2) computing the Jacobian, which is computationally infeasible,
when the number of measurements are high. For structured grids, discrete spectral meth-
ods have had great success in reducing the computational and storage costs involving
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matrix products of the covariance matrix. Many practical applications, need an approach
that works on unstructured grids. We use the Karhunen-Loève expansion (KLE), in which
the covariance function corresponding to the spatially distributed random variable is ex-
panded in terms of basis functions. The inverse problem is then to compute the weights
of these basis functions. For the second issue, we avoid explicit computation of the Ja-
cobian. After appropriate discretization, the reduced Hessian system is solved using an
appropriate Krylov subspace method .

The KLE is a way to represent the prior information of the Gaussian random field.
The random spatial variable is parametrized by a series of eigenfunctions, weighted by
the square root of the eigenvalues, which are derived from an integral eigenvalue problem
involving the covariance function. The eigenvalues are known to decay depending on the
smoothness of the kernel [13] and hence, the expansion can be truncated, resulting in
an approximation to the random field. The number of eigenvalues retained are typically
much smaller than the number of grid points after discretization, and this may result
in significant reduction in computational cost. Previous attempts at using the KLE for
dimensionality reduction of the random field in the context of inverse problems include
[9, 10]. Our approach for solving the inverse problem, having computed the KLE closely
follows [9] but the method of computing the KLE follows [7], employing Hierarchical ma-
trix approach to accelerate matrix vector products involving the dense covariance matrix.

2 Problem Formulation

2.1 Karhunen-Loève representation

Consider the random field s(x), with mean µ(x) and covariance κ(x,y), on the bounded
domain x ∈ D. By the assumptions on s, the covariance kernel is symmetric and positive
semi-definite. The KLE can now be written as

s(x) = µ(x) +
∞
∑

i=1

√

λiφi(x)ξi with, (1)

µ(x) = E[s(x)], ξi =
1√
λi

∫

D

(s(x)− µ(x))φi(x)

Here, ξi are uncorrelated random variables, (λi, φi(x)) are the eigenpair obtained as the
solution to the Fredholm integral equation of the second kind

∫

D

κ(x,y)φ(y)dy = λφ(x) (2)

Since the covariance κ(·, ·) is symmetric and positive definite, the eigenfunctions φi(·) are
mutually orthogonal and form a basis for L2(D) and the eigenvalues λi are real, non-
negative and can be arranged in decreasing order λ1 ≥ λ2 ≥ · · · ≥ 0. If the random field
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is Gaussian, then ξi ∼ N (0, 1). The KLE is typically truncated to a finite number terms
K, typically far fewer than the number of grid points and independent of it. The number
of terms retained in the series depends on the decay of the eigenvalues, which, in turn
depends on the smoothness of the covariance kernel [13].

The eigenpair λi, φi(x) in the KLE, can be computed by first discretizing the weak form
of system of equations 2 (i.e. performing a Galerkin projection) using piecewise linear basis
functions and, subsequently solving the linear eigensystem using a generalized eigenvalue
solver for symmetric matrices, that requires only matrix-vector products involving the
discretized operator. The matrix-vector products involving the dense covariance matrix
can be computed in O(N logN), where N is the number of grid points after discretization,
using the H-matrix approach. For further details, the reader is referred to [7].

2.2 Geostatistical approach

In this section, we review the geostatistical approach for solving inverse problems.
After discretization (e.g., using finite differences, or finite element models), the random
field s(x) is represented by the vector s ∈ R

m, from a set of noisy measurements y ∈ R
n

y = h(s) + v v ∼ N (0,R) (3)

where, h : Rn → R
m is the measurement operator that yields data as a function of parame-

ters and y ∈ R
m is a set of observable quantities. Thus, p(y|s) ∝ exp

(

−1
2
‖y− h(s)‖R−1

)

,
where ‖x‖M = xTMx is a vector norm, when M is symmetric positive definite. Using
Bayes’ rule, we can define the posterior probability density of the parameters s, given the
measurements y

p(s|y) ∝ p(y|s)p(s)
We focus our attention on Gaussian prior for s(x), with mean µ(x) and covariance

κ(x,y). We use the K term KLE for s(x), so that the truncated expansion, sK(x) =
µ(x) +

∑K

i=1

√
λiφi(x)ξi, converges to s(x) in both pointwise and in mean-squared sense

as K → ∞. After appropriate discretization, denoting by sK and µ, the discrete rep-
resentation of sK(x) and µ(x) respectively, we have sK = µ + Φξ, where the columns
of Φ correspond to the discrete representation of the weighted eigenfunctions

√
λiφi(x)

for i = 1, . . . , K and ξ = (ξ1, . . . , ξK)
T . We are now in a position to write the posterior

probability density for ξ,

p(ξ|y) ∝ p(sK(ξ)|y)p(ξ) (4)

∝ p(sK(ξ)|y) exp
(

−1

2
ξTξ

)

The posterior mean ξ̂, obtained by maximizing the negative log-likelihood of the posterior
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distributions, is given by the maximum a posteriori (MAP) estimate

argmin
ξ

1

2
‖y− h(sK(ξ))‖R−1 +

α

2
ξTξ (5)

which can be calculated by solving the non-linear least squares problem using a Gauss-
Newton method. Here α controls the relative importance between the data fitting and
prior information. The posterior covariance matrix is bounded from below by the Fischer
information matrix, as a result of the Cramer-Rao bound. Thus,

V ≥
(

JTR−1J+ αI
)−1

(6)

where, J = ∂h
∂ξ

which is evaluate at the MAP estimate.

3 A Gauss-Newton-Krylov method for computing MAP estimate

The optimization approach that we adopt is very similar to [4, 3, 5]. We adopt a
slightly different notation, however to remain consistent with the rest of this paper. We
assume that our forward problem, the partial differential equation, after discretization
using a suitable method, such as finite differences or finite elements, can be written as
follows

A(s)ui = bi(s) i = 1, . . . , ns (7)

corresponding to ns sources. For example, consider the system of equations arising from
Hydraulic tomography [5]. The governing equations are

−∇(K(x)∇ui) = qi exp
(

−‖x− x2
i ‖/γ2

)

x ∈ D (8)

n.∇ui = 0 x ∈ ∂D
∫

D

uidx = 0

for i = 1, . . . , ns. Here ui are the pressure heads, K(·) is the hydraulic conductivity that
we want to estimate and qi are the the flow rates corresponding to the recharge and xi are
the corresponding well locations. To ensure the positivity ofK(·), for the well-posedness of
the governing equations, it is more convenient to work with s = logK. After appropriate
discretization, this becomes the set of model parameters s, that we want to estimate. The
measurement operator that relates the model parameters to the observations, can then
be written as

hi(s) = Hui = HA−1(s)bi(s) i = 1, . . . , ns (9)

where, H is a sparse matrix that incorporates information regarding the receiver mea-
surement locations. Following the approach in [4], we can write the system (5) as the
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solution of a constrained optimization problem

min
ξ

1
2

∑ns

i=1‖Hui − yi‖2R−1 +
α
2
ξTξ (10)

s.t A(sK(ξ))ui = bi(sK(ξ)) i = 1, . . . , ns

For simplicity of notation, we will derive the expressions assuming that ns = 1. This
can be easily extended to higher number of sources. Also, for convenience, we drop the
dependence on s and ξ. We introduce the Lagrangian L(u, s,λ), where λ is a set of
Lagrange multipliers,

L(u, s,λ) = 1

2
‖Hu− y‖2

R
−1 +

α

2
ξTξ + λT (Au− b) (11)

We are in a position to write down the stationary points of the Lagrangian, which also
form the first-order necessary conditions for minimizers to exist

Lu = HTR−1 (Hu− y) +ATλ = 0 (12)

Lξ = αIξ +GTλ = 0

Lλ = Au− b = 0

where,

G =
∂ (Au)

∂ξ
− ∂b

∂ξ
=

(

∂ (Au)

∂sK
− ∂b

∂sK

)

∂sK
∂ξ

(13)

The reduced Hessian is obtained by first linearizing the system of equations 12, setting
the second order derivatives to zero and eliminating δu and δλ, from the system of
equations, to obtain the solution for δξ

(

JTR−1J+ αI
)

δξ = −αξ − JT (HA−1b− y) (14)

where, J = −HA−1G is the Jacobian matrix. We also define Hred
def
= JTR−1J + αI as

the reduced Hessian, which is symmetric and positive definite. Constructing the Jacobian
matrix could be very expensive in practice, because it requires repeated number of solu-
tions of the forward problem. Instead, forming matrix vector products, Jx and JTx on
appropriate sized vectors x can be performed in three steps - (1) Form z← Gx, (2) solve
the system Ay = z and (3) form q ← −Hy. JTx can be computed in three steps, in a
similar fashion. Thus, the computation of the entries of J is not necessary. Therefore, we
solve the system (14) using a matrix-free Krylov subspace solver, such as Conjugate Gra-
dient (CG) or MINRES. JTR−1J acts like a compact operator with eigenvalues clustering
at zero but the spectrum of Hred is bounded from below by α. Therefore, we expect CG
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to converge super-linearly for this problem, independent of the grid [3]. We emphasize
here that the size of the system 14 is K, the number of terms retained in the KLE, which
is much smaller than the number of grid points. Since, in exact arithmetic, the maximum
number of iterations taken by is the size of the system, we expect the number of iterations
to be far fewer than without the dimensionality reduction. This results in a huge savings
of computational cost, because each iteration requires the solution of the forward problem
2× ns times, which is very expensive.

In practice, a line search is necessary to ensure the global convergence of the Gauss-
Newton approach. We perform a line search using a simple backtracking method, to
determine a step length β that satisfies the strong Wolfe’s condition.

f(ξ + βδξ) ≤ f(ξ) + µβδξT∇f(ξ) (15)

|δξT∇f(ξ + βδξ)| ≤ η|δξT∇f(ξ)|

where, f is the objective function in equation (5), ξk is the current step, δξ is the Gauss-
Newton step that we obtain from the solution of (14) and µ, η are parameters which we
choose to be 10−4, 0.9 respectively based on [11, 2].

4 Results and discussion

We first discuss some aspects regarding the implementation of the algorithm described
in sections (2.1) and (3). We have implemented the computation of the KLE in C++ on
top of PETSc[1]. The implementation of the Hierarchical matrices closely follows [7] and
the integral equation (2) was discretized using linear Finite Elements after first perform-
ing a Galerkin projection. Subsequently, the generalized eigenvalue problem was solved
using a Krylov-Schur algorithm accessed through SLEPc [6], a package also built on top
of PETSc. In the case of symmetric problems, the Krylov-Schur method is equivalent to
the thick-restart Lanczos algorithm. The matrix-vector products involving the covariance
matrix accelerated using the Hierarchical matrix approach, as described in [7].

The covariance function is chosen to be κ(x,y) = exp(−r2/η2), where r = ‖x−y‖ and
η = 0.5. For the inverse problem, we focus our attention on a synthetic problem from
hydraulic tomography. We are interested in imaging the hydraulic conductivity K in the
domain [−1, 1]2 from measurements of the change in head at various locations, due to
pumping tests. The governing equations are described in (7). The locations of the pump-
ing tests and the sensors are given in the figure 4. We pick γ = 0.05 and qi = 102. The
PDE’s are discretized using a cell-centered Finite Volume method and are solved using a
block-CG iterative method [12], which is sometimes advantageous over the repeated use
of the Conjugate gradient method for solving a problem with multiple right hand sides.
Theoretically, the number of iterations are ⌈n/s⌉, where n is the system size and s is the
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number of right hand side, which is smaller than the n iterations that conjugate gradient
requires per right hand side, although the cost per iteration of the block-version is higher.

The true model that we assume is illustrated in figure 4. The synthetic measurements
are generated by solving the forward problem to a much higher accuracy than what is
used in the inversion, with the true model as the log-conductivity field and 0.1% Gaussian
random noise was added to the measurements. For the inversion, we assume thatK = 100
and α = 5 × 10−3. We present very preliminary results. The results of the inversion are
described in figure 4.

Figure 1: (left) Locations of 9 sources(crosses) and 400 measurement sensors(circles). (center) the true
field. (right) reconstructed field on a 200 × 200 grid. 100 terms were used in the expansion. The
reconstruction took 3 Gauss-Newton iterations. The relative L

2 error was about 10%.

Future work includes extension to irregular grids and 3D, uncertainty quantification
via conditional realizations and identifying structural parameters. While the algorithm
itself is not restricted to regular grids, our implementation is.
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