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Summary. Experimental evidence by several groups, including ours, indicates that spa-
tial variations in the capillary-pressure-saturation relationship can dominate the satura-
tion distribution and transport dynamics of CO2-brine systems in natural porous media.
The importance of such small-scale capillary heterogeneity depends strongly on the local
balance of the viscous, buoyancy, and capillary forces. In this paper, a numerical scheme
suitable for capillary heterogeneity simulations is studied. Several conceptual models, and
a CO2 core flood experiment have been simulated by our in-house simulator. The results
are consistent with the theory and experimental observations.

1 INTRODUCTION

Carbon dioxide capture and sequestration (CCS) is believed to be one of the effective
ways to reduce anthropogenic CO2 emission1. In order to understand the complex physics
associated with CO2 storage, core-scale experiments of CO2-brine system are performed.
Experimental observations from several groups, including ours, show significant spatial
variations of the CO2 saturation in rock cores after CO2 flooding2,3,4. An example is shown
in Figure 1. Spatial heterogeneity in the capillary-pressure-saturation relationship, also
called capillary heterogeneity, is believed to be the explanation of this phenomenon5,6,7.

 

Figure 1: Patchy CO2 saturation distribution after CO2 core flooding.
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A conceptual description of capillary heterogeneity is as follows. Suppose the flow
domain is composed of two contiguous regions, labeled I and II, as shown in Figure 2.
The lower capillary-pressure curve corresponds to region I, where the porous medium
has a coarse pore structure. Compared with region I, region II has a fine structure, and
its capillary-pressure curve is higher. As shown in Figure 2(a), the capillary pressure
is continuous across the interface separating the two regions, i.e., P−

c = P+
c . A pair of

distinct saturation values can be found at either side of the interface corresponding to the
same capillary pressure. Note that when the capillary pressure of region I is below the
entry pressure of region II, there is no corresponding capillary pressure value for region II.
In this case, the nonwetting fluid cannot cross the interface, and region II remains fully
saturated with the wetting phase.

(a) (b)

Figure 2: Two types of capillary heterogeneity. (a) Continuous capillarity; (b) Discontinuous capillarity.

In Section 2, a numerical scheme for modeling capillary heterogeneity is described.
In Section 3, several simple models are simulated using our in-house simulator, and the
results are analyzed. The computational challenges in modeling capillary heterogeneity
are also studied. In Section 4, a CO2 core flood experiment is simulated, and the results
are compared with our experimental observations.

2 NUMERICAL SCHEME

Flux continuity of each fluid phase and the correct upstream directions of all phases
must be honored in the numerical solutions to ensure local mass conservation8,9,10. Be-
cause of spacial variations in the permeability, porosity, and the capillary-pressure-saturation
relationship, and the interactions among viscous, buoyancy and capillary forces, the trans-
port dynamics can be very complicated.

2.1 Coupling Flow and Transport

The flow and transport equations can be solved simultaneously (e.g., using Fully Im-
plicit Method, FIM), or sequentially (e.g., using Implicit Pressure Explicit Saturation
Method, IMPES, or Sequential Implicit Method, SEQ)13. Although SEQ requires less
computational effort per timestep than FIM, it is well known that solving the flow and
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transport equations separately leads to a mismatch between pressure and saturation. If
the flow directions of all the fluid phases remain unchanged during the timestep, such
material balance errors are small. These operator-split errors can be further reduced by
taking small timestep, or rectified, to some extent, by adding the error back as a source
term in the next timestep11,12.

However, the flow direction of a fluid phase may change during a timestep. Such flow
reversal is common when gravity segregation or capillary heterogeneity are significant.
Hence, when SEQ is used, the upstream direction used in the discrete flow (pressure)
equation may be inconsistent with the direction for the transport (saturation) equation.
This can cause significant errors in the flux term, leading to convergence problems and
possibly wrong solutions, if the saturations at the upstream and downstream side of the
gridblock interface are different. This is especially the case when capillary heterogene-
ity creates a saturation discontinuity across gridblock interfaces. Hence, for SEQ, even
though the transport equation is solved implicitly, the timestep has to be small enough
to reduce the operator-split error and the effect of flow reversals. For IMPES, capillary
heterogeneity creates much more instability than homogeneous capillarity (see Section 3.2
for an example), and thus the timestep has to be very small. To conclude, for capillary
heterogeneity problems, the flow and transport equations need to be solved simultane-
ously. This allows for larger timesteps, while ensuring that the updates of pressure, phase
velocities, and saturation are completely consistent with the upstream directions, such
that the results ensure local mass conservation of each of the fluid phases.

2.2 Single-Point Phase-Based Upstream Weighting

Due to the hyperbolic character of the governing transport equations, single-point
phase-based upstream weighting is widely used13. Local mass conservation of discrete
approximations is ensured by honoring flux continuity across the control-volume inter-
faces. When the capillary-pressure-saturation relationship is homogeneous throughout
the domain, the saturation distribution is not expected to have local jumps, and the dis-
tribution becomes smoother under grid refinement. On the other hand, in the presence
of capillary heterogeneity, the saturation distribution is expected to display significant
local variations consistent with the capillary-pressure-saturation relation. Single-point,
phase-based upstream weighting can resolve the strong discontinuity in saturation and
honor flux continuity of each phase by guaranteeing that the flux leaving the upstream
gridblock and the flux entering the downstream gridblock are always evaluated using the
saturation at their respective upstream side.

Although a variety of different upstream weighting techniques have been proposed to
reduce numerical dispersion and grid orientation effects14,15, single-point phase-based up-
stream weighting is used - almost exclusively - for general-purpose reservoir simulation. In
addition, using single-point instead of multi-point upwinding technique is also physically
intuitive for capillary heterogeneity problems, because the impact of capillary heterogene-
ity on flow behavior occurs locally at the interface of rock property discontinuities.
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2.3 Assigning Capillary Pressure for Single-Phase Regions

As described in Section 1, when the capillary pressure of a region is below the entry
pressure of the adjacent region, capillary pressure is physically undefined in the latter
region, where only a single phase (wetting phase) exists. In order to determine the correct
phase upstream directions and avoid causing fluid flow that is physically meaningless,
we assign a capillary-pressure value for each wetting-phase saturated gridblock, as if an
infinitesimal amount of the nonwetting phase exists. This ‘virtual capillary pressure’
equals the entry pressure Pc,e. An example is provided in Figure 3.
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Figure 3: Region II has a higher entry pressure compared to region I. The initial condition is: S
(I)
w = 0.8,

S
(II)
w = 1 , and no fluid exchange will take place. If in region II pw = pn = p, see (b), the nonwetting

phase will flow into region II (as indicated by the arrow), which is not physical. By assigning P
(II)
c as Pc,e,

see (c), the nonwetting phase potential direction will point to region I. Because single-point upstream
weighting is used, the nonwetting phase transmissibility at the interface is zero (since the upstream Sn

is zero). No flow will occur, which is consistent with the physics.

This approach does not affect the pressure continuity of the physically connected phase,
regardless of the choice for the primary pressure variable. Suppose that the wetting fluid
fully saturates a domain that is composed of regions with heterogeneous capillary entry
pressures. Because the nonwetting phase mobility is zero (since Sn = 0 everywhere), the
mass conservation equations of the wetting and the virtual ‘nonwetting’ phase are reduced
to one of the following Laplace equations:

∇(λw∇pw) = 0 pw as primary pressure variable, (1)

∇(λw∇(pn − Pc,e)) = 0 pn as primary pressure variable, (2)

depending on which primary pressure variable is used. The solution of this elliptic equa-
tion guarantees that the pw term in Equation (1), or the pn − Pc,e term in Equation (2)
will always be continuous. This suggests that the connected (wetting) phase always has a
continuous pressure field. Thus, either the wetting or the nonwetting phase pressure can
be used as the primary pressure variable, even if one phase is absent.
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3 SIMULATION OF CONCEPTUAL MODELS

3.1 Capillary Equilibrium

The example considers immiscible and incompressible two-phase flow in a 1D horizontal
domain, which is composed of two regions of porous media with identical length, but
different rock properties. Initially, the left side (region I) is fully saturated with the
wetting fluid, and the right side (region II) is fully saturated with the nonwetting fluid.
The domain is incompressible with no sources or sinks, and therefore the flow is completely
driven by capillary forces. All related properties are listed in Table 1. The capillary-
pressure curves for regions I and II are derived using the Leverett J-function based on
their porosities and permeabilities.

Table 1: Properties used in capillary equilibrium study.

Porosity φ(I) = φ(II)

Permeability k(I)/k(II) = 4
Fluid properties µw = µnw, ρw = ρnw

Relative permeability krw = S4
w, krnw = (1− Sw)2(1− S2

w)

Capillary pressure J(Sw) = S−0.5
w , Pc = σ cos θ

√
φ/k · J(Sw)

Entry pressure ratio P
(I)
c,e /P

(II)
c,e = 1/2

       
                                             (a)                                                                       (b) 

Figure 4: (a) Semi-analytical solution and simulation results. The coordinate is expressed in dimensionless
form. (b) Capillary pressure at both sides of the interface.

Van Duijn and de Neef (1996) derived a semi-analytical solution for this problem8,
which is plotted in Figure 4(a). The saturation values on either side of the region interface
are shown in Figure 4(b). As can be seen, the capillary pressure is discontinuous across the
interface. Simulation was performed using Stanford General Purpose Research Simulator
(GPRS)16,17, and the domain was discretized into 300 gridblocks. The results, shown in
Figure 4(a), are in good agreement with the semi-analytical solutions, indicating that flux
continuity is honored and that the correct flow directions are computed.
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3.2 Capillary vs. Viscous Forces

We now analyze a water-displacing-oil process in a 1D water-wet heterogeneous reser-
voir core. The core size is 12 × 5 × 5 cm3 and is discretized into 40 gridblocks in the x
direction. For each gridblock, the porosity is 0.25, and the permeability follows a lognor-
mal distribution with a mean value of 100 md and a variance of 2500 md2. The viscosities,
relative permeability curves and the J-function are the same as those in Table 1. Two
flow rates are simulated, such that the capillary number uµw

σ
is on the order of 10−7 and

10−6, respectively.
GPRS simulation result at 100 pore volumes injected (PVI) is shown in Figure 5(a).

Where there is a fine pore structure (indicated by low permeability), the water saturation
tends to be high. The variation of saturation is less for the larger rate, i.e., when viscous
force becomes greater. The Courant-Friedrichs-Lewy (CFL) number18 divided by timestep
size (dt) is plotted in Figure 5(b) and compared with the simulation results that use
a single homogeneous capillary pressure curve (the average of all the curves). As the
figure indicates, when the flow rate is low, the CFL/dt in the capillary heterogeneity case
can be much larger than the homogeneous case. Thus, the combination of dominance
of capillarity over the viscous forces and heterogeneous capillarity-pressure-saturation
relationships makes the problem more challenging to solve numerically.

    
                                                   (a)                                                                                                           (b) 
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Figure 5: (a) Simulation result at 100 PVI and permeability distribution. (b) CFL/dt with and without
modeling capillary heterogeneity.

4 SIMULATION OF CO2 CORE FLOOD EXPERIMENT

4.1 Motivations

The migration of CO2 plumes in storage formations depends strongly on the interaction
between viscous, gravity and capillary forces. In order to simulate long-term CO2 geo-
logical storage, the accuracy and efficiency of the numerical simulator in modeling such
interactions must be demonstrated. Core flood experiments provide an excellent op-
portunity to gain deeper understanding of multiphase flow dynamics under controlled
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laboratory conditions, and they also serve as a reference for any proposed mathemati-
cal model and numerical solution. The in-situ pressure and saturation distributions in
the rock are measured using sensors and tomography, allowing direct verification of the
simulation results.

4.2 Experiment and Simulation Results

The Berea sandstone core used in the core flood experiment was 5.08 cm in diameter,
and 10.2 cm in length. The system was pressurized to 1800 psi and heated to 50 ◦C.
The injection rate was 3 ml/min, with 90 % fractional flow of CO2. The outlet pressure
was kept constant at 1800 psi. The details of the experimental procedure are described
by Perrin and Benson (2009)2. The laboratory-measured porosity distribution, relative
permeability and J-function curves, and the estimated permeability distribution (using
the method proposed by Krause et al., 2011)5 serve as the input for the GPRS simulator.
The simulation results after reaching steady state are compared with the experimental
Computerized Tomography (CT) measurements in Figure 6. The computed saturation
values agree well with the measured saturations (unit slope in Figure 6). These results
indicate that simulations capture the complex pattern of CO2 distribution, which are
highly nonlinear functions of the interactions between capillary heterogeneity, gravity,
and viscous forces.
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Figure 6: Correlation between experimental measurements and simulation.

5 CONCLUSION

To simulate capillary heterogeneity accurately, flux continuity and correct upstream
directions of the two immiscible phases across the interfaces of the control volumes should
be honored. Capillary heterogeneity complicates the dynamics and can lead to numer-
ical challenges. Implicit coupling of the flow and transport equations is required, such
that the updates of pressure and saturation are completely consistent with the upstream
directions of each phase across each control-volume interface. The commonly used single-
point phase-based upstream weighting scheme can resolve the discontinuous saturations
created by capillary heterogeneity. Although the capillary pressure is physically undefined
in regions that are fully saturated by the wetting phase, a capillary pressure value that
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corresponds to having an infinitesimal amount of the absent phase should be assigned.
This approach will avoid unphysical flow when phase-based single-point upstream weight-
ing is used. A CO2 core flood experiment have been simulated by our in-house simulator
GPRS, and the results are consistent with the experimental observations.
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