ANALYSIS OF CAPILLARY PRESSURE IN A TWO-FLUID-PHASE POROUS MEDIUM SYSTEM

Amanda Dye, University of North Carolina-Chapel Hill, 734-673-1541, alynnd@live.unc.edu

1. Amanda L. Dye, University of North Carolina at Chapel Hill
2. James E. McClure, University of North Carolina at Chapel Hill
3. Laura J. Pyrak-Nolte, Purdue University
4. David Adalsteinsson, University of North Carolina at Chapel Hill
5. William G. Gray, University of North Carolina at Chapel Hill

Modeling two-fluid-phase flow in porous medium systems requires the specification of closure relations to produce a solvable system. The thermodynamically constrained averaging theory (TCAT) has been used to formulate a closed model and to yield insights about the underlying microscale processes that must be represented at the macroscale. To support these TCAT developments, we consider two-fluid-phase flow micro-model experiments. Image analysis is used to interpret the fluid distributions, interfacial areas, and curvatures from a laboratory experiment in which external fluid pressures were varied and the system allowed to equilibrate for a period of time before the next step change in fluid pressures. The equilibrium state is modeled at the pore scale based upon a medial axis analysis. The equilibrium state and dynamics are also simulated using a lattice Boltzmann method. The results are considered in light of model forms and closure relations produced using TCAT.