Poster	Session I											
		:00 - 8:00 PM										
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,											
Lobby	- National Ce	nter for Supercom	puting App	lications								
,												
Session	ns:											
Advand	ing the Predi	ction Skill and Effic	ciency of Flo	od Inundat	ion Models							
		e-Surface-Subsurf	•									
Genera	· · · · · · · · · · · · · · · · · · ·											
High-D	imensional Co	omputational Mod	leling of Riv	ers and Stre	eams							
		•			om a Systems Perspective							
Advan	cing the Pred	iction Skill and Eff	iciency of F	lood Inunda	ation Models							
1	Byunghyun	Kim	A fast num	erical mode	el for tsunami propagation and inu	ndation						
2	Shuangcai	Li	TITLE CORF	RECTION								
High-D	imensional C	omputational Mo	deling of Ri	vers and St	reams							
3	SOM	DUTTA	Effects of S	elf-Stratific	ation on Turbidity Currents: A Larg	e Eddy Simu	ulation appr	oach				
4	Roberto	Fernandez	Validation	of a 2D dep	th-averaged rigid-lid model agains	t velocity m	easuremen	ts for a high	-amplitude	meandering flume		
5	Tatiana	Garcia	Three dime	ensional Lag	grangial model for fate and transpo	ort of Silver	and Bighead	d Carp eggs				
6	Shadi	Aknooni	3D-Numer	cal Simulat	ion of The Flow in Pool and Weir F	shways						
7	Enrique	Vivoni	WITHDRAV	VN	Using High Performance Computi	ng to Assess	the Impact	of Climate	Change on	the Hydrologic Respon		
Couple	d Atmosphe	re-Surface-Subsurf	face Models	3								
8	Gautam	Bisht	Improving	Surface and	Subsurface Hydrologic Processes	within the C	ommunity l	Land Surfac	e Model (CL	.M): Coupling PFLOTRA		
9	Steven	Carle	Linking Sur	face 3H to 3	3H-3He Groundwater Age by Gas-L	iquid Phase	Transport N	∕Iodeling				
10	Yanqing	Lian	Conduit Flo	w Modelin	g of Karst Systems in Guilin, China							
11	Jens-Olaf	Delfs	AN INTER	-COMPARI	SON OF TWO COUPLED HYDRO	GEOLOGIC	AL MODEL	.S				
Genera	al Session											
12	Rachid	Ababou	Numerical	Flow Experi	iments on Samples of Heterogened	us Unsatura	ated Porous	Media:Ups	caling of Pe	rmeability-Pressure Cu		
13	Peter	Engesgaard	Full Tensor	Representa	ation of Anisotropy in Hydraulic Co	nductivity:	Effects on s	imulating di	ischarge of	groundwater to lakes		
14	Scott	Griebling	Adjoint Me	thodology	to Simulate Stream Depletion due	to Pumping	in a Non-lir	near Couple	d Groundw	ater and Surface Water		
15	Gorti	Kasi Viswanadh	MORPHON	IETRIC ANA	LYSIS AT MINIWATERSHED LEVEL U	JSING GIS						
16	Georgios	Kopsiaftis	WITHDRAV	VN	Region Growing Based Segmentat	ion for the I	Estimation of	ofTransmissi	ivity Zone S	tructure		

17	Viviana	Morales	Numerical	Modeling of	f Ogee Cres	t Spillway a	nd Tainter G	ate Structu	re of a Dive	ersion Dam	on Cañar Riv	er, Ecuador	•
18	Erica	Siirila	The effect of	e effect of macro-kinetic solutes on human health risk with time-dependent exposure									
19	Fred	Tracy	Effect of W	fect of Woody Vegetation on Hydraulic Conductivity at Various Levee Systems Using Numerical Models									
20	Dragan	Vidovic	Tabulation	oulation of saturation models									
21	Jean-Régis	Angilella	The effect of	e effect of mechanical dispersion on miscible density-driven instabilities in a Hele-Shaw cell with horizontal flow.									
22	Francesco	Zovi	3-D versus	O versus 2-D modeling of natural aquifers: the experimental site of Settolo, Italy.									
23	Arturo	Leon	Hydraulic P	draulic Performance Graph-based model for unsteady flow simulations in topologically complex river networks									
Optim	ization and	Uncertainty Ana	ysis of Wat	er Resource	es from a Sy	stems Pers	pective						
24	Giovanna	Darvini	Evaluation	of the dispe	ersion proce	sses in con	ditioned tra	nsmissivity	field				
25	Nathan	Gibson	Toward red	oward reduction of uncertainty in complex multi-reservoir river systems									
26	Raul	Perulero Serrano	Delineation	elineation of hydrofacies in heterogeneous aquifers using the Truncated Plurigaussian method: a field case study in norther									
27	John	Tauxe	Stochastic S	ochastic System-Level Modeling of a Hydropower System to Inform Operational Decision Making									
28	Adriana	Piemonti	A SOCIOEC	ONOMIC FR	AMEWORK	FOR INCOF	RPORATING	STAKEHOLD	DER PREFER	ENCES IN T	HE OPTIMIZA	ATION OF D	ISTRIBUTED

Poster Session II											
Tuesday, June 19	, 6:00-8:00										
Chancellor Ballro	om, I-Hotel a	nd Conference Cen	ter								
Sessions:											
Advances in Hete	rogeneous Co	mputing for Water	Resources								
Advances in Nonl	inear and Line	ear Solvers for Wate	er Resource	s Applicatio	ns						
Applying High-Per	rformance Co	mputing for Scienti	fic Discover	y within Rea	al-World Problems						
CO2 Sequestratio	n										
Computational Ed	ohydrology										
Data-driven Appr	oaches for Wa	ater Resources Fore	ecasting and	Knowledge	Discovery						
General											
Linking Observati	on and Predic	tion: Frameworks f	or Data Ass	imilation, U	ncertainty Analysis and Valuing Inf	ormation					
Mixing and React	ions across Sc	ales in Porous Med	lia								
Modeling and Ana	alytics for Hyd	rologic Impact Ass	essments di	ue to Climat	e Change						
Multiphase and P	ore-Scale Mo	deling: Challenges a	and Perspec	tives							
Subsurface Bioge	ochemistry ar	nd Reactive Transpo	ort Modeling	5							
Advances in Hete	rogeneous Co	omputing for Wate	r Resources	3							
1 André R.	Brodtkorb		Shallow W	ater Simula	tions on Graphics Processing Units						
Applying High-Pe	rformance Co	mputing for Scient	tific Discove	ry within R	eal-World Problems						
2 Kumar	Mahinthakur	mar	WITHDRAWN Comparison of parallel solvers for large-scale groundwater contaminant transport simulation								
3 Glenn	Hammond		PFLOTRAN	: next-gene	ration petascale subsurface reactiv	e flow and	transport co	ode			
Advances in Non	linear and Lin	ear Solvers for Wa	ter Resourc	es Applicat	ions						
4 Melkamu A	Ali		Determina	tion of discl	narge storage relation using numer	ical models	for homog	eneous 2D v	vertical hills	lope	
5 Ivan	Marin		Simulating	Groundwat	er Flow in Fractured Porous Media	using the A	Analytic Eler	ment Metho	od		
6 Fred	Tracy		Performan	Performance of Parallel Linear Iterative Preconditioners and Solvers from a Finite Element Model of Woody V							
7 Tullio	Tucciarelli		A novel pro	ocedure for	the solution of the heterogeneous	anisotropio	transport ¡	problem. Pa	rt 2: the tim	ne-depende	
NEW Christophe		A non linea	ar correction	n and maximum principle for diffus	ion operato	rs discretiz	ed using hy	brid scheme	es		
CO2 Sequestration	n										
8 Uditha	Bandara		Pore-scale investigation of unstable viscous and capillary fluid displacement using Smoothed Particle Hydrodynam								
9 Mingjie	Chen		Three-Dim	ensional Ga	s Migration Model for theLeroy Na	tural Gas St	orage Facili	ty			

10	Brent	Cody	Optimization of Geological Carbon Sequestration using Semi-Analytical Leakage Models linked to a Mul	lti-objective								
	Souheil	Ezzedine	Simulation of Supercritical Carbon Dioxide Leakages in Fractured Porous Reservoir									
12	Kayyum	Mansoor	Assessing Impact of CO2 Leakage in Groundwater Aquifers in the Presence of Data Uncertainties									
13	YAGNADEE	ORUGANTI	ORUGANTI Improvements in Simplified Modeling of CO2 Geologic Sequestration									
14	Qing	Tao	Optimization of Geothermal Circulation Coupling Surface Dissolution CO2 Storage									
15	Philip	Winterfeld	A Novel Fully Coupled Geomechanical Model for CO2 Sequestration in Fractured and Porous Brine Aqui	ifers								
Multip	hase and P	ore-Scale Mode	eling: Challenges and Perspectives									
16	Florian	Doster	Rate-dependent equilibrium saturation distributions through hysteresis in two-phase flow in porous mo	edia								
17	Johan Olav	Helland	Semi-Analytical Computation of Three-Phase Capillary Entry Pressures and Arc Menisci Configurations i	in 2D Rock I								
18	Matthias	Herz	Coupled flow and transport with additional electrostatic interaction									
19	Abhishek	Singh	Simulating Air-Entrapment in Low Permeability Mudrocks using a Macroscopic Invasion Percolation Mo	odel								
20	Rusen	Sinir	Computer Generated Particle Arrangement for Pore Scale Modeling									
21	Mark	Porter	TAXILA LBM: A LATTICE-BOLTZMANN SIMULATOR FOR SINGLE- AND MULTI-PHASE FLOW IN COMPLEX	POROUS M								
Mixin	g and React	ions across Scal	les in Porous Media									
22	Jane	Chui	Understanding the Evolution of Miscible Viscous Fingering Patterns									
		Donado	MULTICOMPONENT REACTIVE TRANSPORT MODELING IN A 1D COLUMN									
24	Tamir	Kamai	Modeling Bacterial Transport with Horizontal Gene Transfer in Porous Media									
25	Daniel	McInnis	Agent-Based Simulation of Reactive Solute Transport									
26	Amir	Paster	Incomplete Mixing and reaction in heterogeneous porous media: A particle based numerical study									
27	Clément	Varloteaux	Pore-scale determination of macroscopic coefficients for macroscale modeling of reactive transport flo									
	Hongkyu	Yoon	Quantifying the impact of viscosity variations induced by a chemical reaction on mixing efficiency in po	rous media								
29	Jiang	Jianguo	A Novel Transition Rate Transformation Method For Solute Transport									
			d Reactive Transport Modeling									
	Sina	Arjmand	Coupled Flow and Contaminant Transport Models for Toxic Elements Associated with the Marcellus Sha	ale Flowbac								
	Oscar	Garcia-Cabrejo										
	Amalia	Kokkinaki	The effect of soil heterogeneity on dissolution and microbial kinetics during enhanced bioremediation of									
	Chuan	Lu	A Massively Parallel Fully-Coupled Fully-Implicit Solution To Reactive Transport in Porous Media Using F									
	Reza	Zolfaghari	Multi-component Reactive Transport Modeling of PCE Degradation at the Pilot Scale Constructed Wetla									
	Ming	Ye	Uncertainty qualification of biogeochemical models for ethanol-stimulated uranium (VI) reduction in su									
	Jarbas	Miranda	SIMULATING NITRATE AND POTASSIUM ION TRANSPORT FOLLOWING THE APPLICATION OF VINASSE TO	LABORATO								
	Yuanyuan		Transport of Cryptosporidium parvum Oocysts in a Silicon Micromodel									
38	Matthew F	arthing	A Generic Reaction-Based BioGeoChemical Simulator									

General													
39 Stacy Howington		A Multi-dimensional Particle Tracking Computer Program for Environmental Research and Study											
Linking Observati	on and Predic	ction: Frameworks	for Data As	similation,	Uncertainty Analysis and	d Valuing	Informatio	n					
40 Ryan	Bailey		Estimating	nating Hydraulic Conductivity Geostatistical Parameters using An Iterative Ensemble Smoother Scheme									
41 David	Bailly (Rachid	Ababou presents)	Statistical r	stical reconstruction of subsurface hydro-meteorological and crack aperture time series based on residua									
42 Xiao	Chen		Hybrid Unc	ertainty Qu	antification Techniques f	or Reactiv	ve Transpor	t Applicatio	ns				
43 Evan	Coopersmith		Machine Le	earning Algo	orithms of Soil Drying								
44 Daniel	Erdal		Model calib	oration with	n external error models								
45 Dylan	Harp		Model anal	ysis and de	cision support (MADS) fo	r complex	c physics mo	odels					
46 Graciela de	Herrera		SENSITIVIT	Y ANALYSIS	OF PARAMETER AND STA	ATE ESTIM	1ATION OF (GROUNDWA	ATER FLOW	AND TRANS	SPORT MOD		
47 Sanjeev	Jha (Barbara	Minsker presents)	A geostatis	tical approa	ach to estimating river ba	thymetry	in near rea	l-time.					
48 John	Van Esch				er Flow though Dikes for F		•						
49 Mohamad	El Gharamti		A Dual Stra	tegy for En	semble Kalman Data Assir	milation v	vith a Coupl	ed Subsurf	ace Contam	inant Trans	oort Model		
			ecasting and Knowledge Discovery										
	,	s Flipo presents)			Interpolation for a Better						Distributed		
0	Xu				er Flow Model Prediction				ven Models				
52 Ci	Yang		Modeling S	tream Flow	Extremes under Non-Tin	ne-Statior	nary Conditi	ons					
		drologic Impact Ass											
	Bresciani		Theoretical analysis of topographical, geological and climatic controls on the groundwater system										
54 Devashish					ring current and next gen					on mean st	ates and ext		
	Van Esch				d for Single-phase and Μι	•							
56 Jorge	Vélez (Olga C	campo presents)	Hydrologic	Impact Ass	essment due to Climate C	Change at	Chinchina F	River Basin,	Colombia				
Computational Ec													
	Ceperley		Use of a Distributed Sensor Network to Parameterize a Model of Flows between the Soil, Vegetation, and Atmosp										
		an Istanbulluoglu)	-	eciphering the role of climate and land use on regional hydrologic trends: A modeling study of the upper Mississ									
	Gentile		, ,	ydrological Aspects of an Agent-Based Model for Malaria Transmission									
			_		pe Ecohydrological Patte					ion Dynami	cs and a Pai		
	Rings (by Jas	oer Vrugt)	•		ogical parameters of coni								
62 Thomas	Volo		Modeling S	oil Moistur	e and Plant Stress under I	Irrigated (Conditions i	n Semiarid	Urban Area	S			