MODELING DENSITY-COUPLED STOKES FLOW AND MASS TRANSPORT THROUGH FRACTURES

Ali Zidane\(^{(1,2)}\), Anis Younes \(^{(1)}\), Peter Huggenberger\(^{(2)}\), Eric Zechner\(^{(2)}\)

\(^{(1)}\) Laboratoire d'Hydrologie de Geochimie de Strasbourg, University of Strasbourg, CNRS, UMR 7517
\(^{(2)}\) Department of Environmental Sciences, University of Basel, Institute of Geology, Switzerland

Keywords: variable density flow, Stokes flow, nonconforming finite elements, discontinuous finite elements, MPFA, analytical solution.

Summary In this work, a numerical model is developed for modelling coupled Stokes flow and mass transport in the case of large density variations. The Stokes flow equations are solved using the Crouzeix-Raviart (CR) approximation. For the transport equation, the Discontinuous Galerkin (DG) method is used for the discretization of the advection equation and combined with the symmetric Multi-Point Flux Approximation (MPFA) method for the discretization of the diffusion equation. A semi-analytical solution, obtained by expanding the salt concentration and the stream function in double Fourier series, is developed for a synthetic problem of salt water intrusion in a fracture and used for the validation of the numerical model.

1. INTRODUCTION

Fluid flow and transport through fractures are important in environmental and petroleum engineering [1]. In this paper, we develop an accurate numerical model to simulate transport of salt water through cavities or fractures. In this case, the flow equations and the solute transport equations are coupled by the state equations linking density variations to mass fraction. In this work, the flow through cavities is considered steady and laminar and the inertial forces in the flow field are assumed to be negligibly small compared with the viscous and pressure forces. Therefore, the free-flow is governed by the Stokes equation [2, 3, 4, 5, 6, 7, and 8]. Different methods can be used for the discretization of the Stokes equation [9]. We use in this work the Crouzeix-Raviart (CR) approximation based on the nonconforming piecewise linear finite elements for the velocity and the piecewise constant finite elements for the pressure. For the transport equation, the Discontinuous Galerkin (DG) method is used to discretize the advection equation and combined with the symmetric Multi-Point Flux Approximation (MPFA) method for the discretization of the diffusion equation [10]. The DG method allows to obtain a robust and accurate numerical scheme for problems involving sharp fronts [11]. On the other hand, the MPFA method is locally conservative and handles general irregular grids [12, 13, 14]. The MPFA and the DG discretization can be gathered into one system matrix without operator splitting [10]. Flow and transport equations are solved sequentially using a non iterative scheme with proper time management based on local truncation error control as in [15]. To validate the numerical code, we develop a semi-analytical solution for a synthetic problem of saltwater intrusion through a cavity. This problem is obtained by replacing the confined aquifer (flow governed by Darcy flow) in the well known Henry [16] saltwater intrusion problem by a cavity (flow governed by Stokes free-flow). As with the standard Henry problem [16], we develop a semi-analytical solution by expanding the concentration and the stream function in a double set of Fourier series.
2. MATHEMATICAL MODELS

Single-phase steady incompressible flow through a fracture is governed by the Navier-Stokes equation:
\[\rho (u \cdot \nabla) u + \nabla p - \mu \nabla^2 u = \rho g \]
(1)

and the continuity equation:
\[\nabla \cdot u = 0 \]
(2)

where \(\rho \) is the fluid density, \(u \) is the velocity vector, \(p \) is the pressure, \(g \) is gravity, and \(\mu \) is the dynamic viscosity.

We assume that the flow through the fracture is sufficiently slow to consider the inertial forces in the flow field (the first nonlinear term in equation (1)) negligibly small compared with the viscous and pressure forces. Therefore, in this case, the free-flow is governed by the following Stokes equations [17, 18, 19]:
\[\nabla p - \mu \nabla^2 u = \rho g \]
(3)
\[\nabla \cdot u = 0 \]
(4)

In this work, three kinds of boundary conditions are used with this system:
- The velocity \(u \) is prescribed on the boundary;
- Free outflow boundary condition \(\mu (\nabla u) \eta - \rho \eta = 0 \) with \(\eta \) the outward normal vector to the boundary;
- The pressure \(p \) is prescribed at the boundary. Note that in this case, we set also the velocity components in the tangential direction to zero on the same boundary as used in [20, 21, 22, 23, 24]. This condition is named Normal flow/Pressure or straight-out boundary condition.

Solute transport in the free-flow region can be described by the following convection-diffusion equation:
\[\frac{\partial C}{\partial t} + u \cdot \nabla C = D \nabla^2 C \]
(5)

where \(C \) is the solute mass fraction and \(D \) is the molecular diffusion coefficient.

Flow and transport equations are coupled by the linear state equation linking density to mass fraction:
\[\rho = \rho_i + (\rho_i - \rho_0) C \]
(6)

with \(\rho_i \) the density of the injected fluid and \(\rho_0 \) the freshwater density.

The boundary conditions for the transport equation are of Dirichlet type (\(C \) is fixed) or a convective boundary type (\(\partial C / \partial \eta = 0 \) where \(\eta \) is the direction normal to the boundary).

3. STOKES FLOW DISCRETIZATION

The system (3)-(4) cannot be discretized with the same order for pressure and velocity approximations due to stability conditions. Otherwise some sort of stabilization is added to the mixed formulation [25]. To avoid these difficulties, we use the non-conforming Crouzeix-Raviart (CR) elements for the velocity approximation in combination with constant pressure per element, since they satisfy the Babuska-Brezzi condition [26, 27, 28]. This condition is central for ensuring that the final linear system to solve is non-singular [9]. Moreover, the non-conforming Crouzeix-Raviart (CR) element has local mass conservation properties [29] and leads to a relatively small number of unknowns due to the low-order shape functions. The
CR element is used in many problems such as the Darcy-Stokes problem [30], the Stokes problem [31] and the elasticity problem [32, 33]. The CR element gives a simple stable optimal order approximation of the Stokes equations [34]. In the following, we recall the main stages for the discretization of the Stokes equation with the CR triangular element.

With the non-conforming finite element method, the degrees of freedom for the velocity vector \(\mathbf{u} \) are the two component \((u_i, v_i)\) of \(\mathbf{u} \) at the midedge \(i \) facing the node \(i \). Inside the element \(E \), we assume a linear variation of the velocity components \((u_i, v_i)\)

\[
\begin{align*}
 u_E &= u_i \phi_i^E + u_j \phi_j^E + u_k \phi_k^E, \\
 v_E &= v_i \phi_i^E + v_j \phi_j^E + v_k \phi_k^E
\end{align*}
\]

(7)

For an interior edge, the linear interpolation function \(\phi_i \) for the velocity is nonzero only on the two adjacent elements \(E \) and \(E' \), where \(|E|\) is the area of the element \(E \), \(x_i \) and \(z_i \) are the coordinates of the vertex \(i \) of \(E \). The interpolation function \(\phi_i^E \) equals 1 on the midedge \(i \) and zero on the midedges \(j \) and \(k \) of \(E \).

The variational formulation of the Stokes equation (3) using the test function \(\phi_i \) over the domain \(\Omega \) writes:

\[
\int_\Omega \nabla \cdot (\mu \nabla \mathbf{u} - p \mathbf{I}) \phi_i - \int_\Omega \rho g \nabla z \phi_i = 0
\]

(8)

where \(\nabla \mathbf{u} \) is the gradient of the velocity vector \(\mathbf{u} \) and \(\mathbf{I} \) the 2×2 identity matrix.

Using Green’s formula,

\[
\int_\Omega \phi_i (\mu \nabla \mathbf{u} - p \mathbf{I}) \eta_{\partial\Omega} - \int_\Omega \nabla \cdot (\mu \nabla \mathbf{u} - p \mathbf{I}) \phi_i = \int_\Omega \rho g \nabla z \phi_i
\]

(9)

The first integral contains boundary conditions. It vanishes in case of free-flow boundary or in case of an interior edge \(i \). In this last case, equation (9) becomes

\[
-\int_E \nabla \cdot (\mu \nabla u_E - p_E \mathbf{I}) \phi_i^E - \int_{E'} \nabla \cdot (\mu \nabla u_E - p_E \mathbf{I}) \phi_i^{E'} = \int_E \rho g \nabla z \phi_i^E + \int_{E'} \rho g \nabla z \phi_i^{E'}
\]

(10)

Using (7) and (8), we obtain

\[
-\int_E \nabla \cdot (\mu \nabla u_E - p_E \mathbf{I}) \phi_i^E = \frac{\Delta z'}{\Delta x'} P_E - \frac{\mu}{|E|} \sum_{j=1}^{3} (\Delta x' \Delta x_i + \Delta z' \Delta z_i) u_j
\]

(11)

and

\[
\int_E \rho g \nabla z \phi_i^E = \rho_E g (\overline{z}_i - z_E) \left(\frac{\Delta z'}{\Delta x'} \right)
\]

(12)

where \(\Delta x' = x_j - x_k \) and \(\Delta z' = z_k - z_j \), \(z_E \) and \(\overline{z}_i \) are respectively the \(z \)-coordinate of the centre of \(E \) and of the midpoint of edge \(i \), \(\rho_E \) and \(p_E \) are respectively the mean density and pressure over \(E \).

The finite volume formulation of the continuity equation (4) over the element \(E \) writes:

\[
\int_E \nabla \cdot \mathbf{u} = 0
\]

(13)

using (7), it becomes
\[
\sum_{j=1}^{3} \left(\Delta x^j u_j + \Delta x^j v_j \right) = 0
\]

(14)

4. TRANSPORT DISCRETIZATION

For the transport equation, standard numerical methods, such as standard finite elements or finite volumes, are known to generate solutions with numerical diffusion and/or non-physical oscillations when advection is dominant. These problems can be avoided with DG [35]. Indeed, DG leads to a high-resolution scheme for advection that has been proven to be clearly superior to the already existing finite element methods [36].

In this work, the explicit DG method, where fluxes are upwinded using a Riemann solver is used to solve the advection equation and combined with the symmetric Multipoint Flux Approximation (MPFA) method for the diffusion equation.

The transport equation (5) is written in the following mixed form

\[
\begin{align*}
\frac{\partial C}{\partial t} + u \cdot \nabla C + \nabla \cdot (u D) &= 0 \\
u_d &= -D \nabla C
\end{align*}
\]

(15)

The dispersive flux \(u_d \) is assumed to vary linearly inside the element \(E \), therefore,

\[
\nabla \cdot u_d = \frac{1}{|E|} \sum \int_{\partial E_i} Q_{D,Ei}^E \partial \nabla
\]

(16)

where \(Q_{D,Ei}^E = \int_{\partial E_i} u_d \cdot \eta_{Ei} \) is the dispersive flux across the edge \(\partial E_i \) of \(E \).

We use the \(P1 \) DG method where the approximate solution \(C_h(x,t) \) is expressed with linear basis functions \(\phi_i^E \) on each element \(E \) as follows:

\[
C_h(x,t)|_E = \sum_{i=1}^{3} C_i^E(t) \phi_i^E(x)
\]

(17)

where \(C_i^E(t) \) are the three unknown coefficients corresponding to the degrees of freedom which are the average value of the mass fraction defined at the triangle centroid \((\bar{x}_E, \bar{z}_E)\) and its deviations in each space direction [37] with the corresponding interpolation functions:

\[
\phi_1^E(x,z) = 1, \quad \phi_2^E(x,z) = x - \bar{x}_E, \quad \phi_3^E(x,z) = z - \bar{z}_E.
\]

(18)

The variational formulation of (15) over the element \(E \) using \(\phi_i^E \) as test functions leads to (see [10] for details),

\[
[A] \begin{pmatrix}
\frac{dC_1^E}{dt} \\
\frac{dC_2^E}{dt} \\
\frac{dC_3^E}{dt}
\end{pmatrix} = [B] \begin{pmatrix}
C_1^E \\
C_2^E \\
C_3^E
\end{pmatrix} + \left[M^0 \right] \begin{pmatrix}
C_1^E \\
C_2^E \\
C_3^E
\end{pmatrix} - \sum_{j=1}^{3} \left[M^t \right] \begin{pmatrix}
C_1^E \\
C_2^E \\
C_3^E
\end{pmatrix} + \sum_{j=1}^{3} Q_{D,j}^E
\]

(19)

with,
\[A_{i,j} = \sum_{E} \int_{E} \phi_{E}^i \phi_{E}^j \quad B_{i,j} = \sum_{E} \int_{E} \phi_{E}^i \nabla \phi_{E}^j \]

\[M_{i,j}^{0} = \sum_{E} \lambda_{E}^{0} \int_{E} O_{E}^{i,j} \phi_{E}^{i,j} \quad M_{i,j}^{\ell} = (1 - \lambda_{E}^{i,j}) \int_{E} O_{E}^{i,j} \phi_{E}^{i,j} \quad (\ell = 1, \ldots, 3) \]

where \(E_j \) is the adjacent element to \(E \) such that \(\partial E_j \) is the common edge of \(E \) and \(E_j \) and \(Q_{E}^{i,j} = \int_{\partial E} u \eta_{E} \) the water flux across \(\partial E_j \). The upwind parameter \(\lambda_{E}^{i,j} \) is defined by

\[
\lambda_{E}^{i,j} = \begin{cases}
1 & \text{if } u \eta_{E} \geq 0 \\
0 & \text{if } u \eta_{E} < 0
\end{cases}
\]

(20)

5. \textbf{VALIDATION OF THE DENSITY-COUPLED FLOW TRANSPORT PROBLEM}

5.1 The semi-analytical solution of saltwater intrusion trough a cavity

To validate the numerical code, a semi-analytical solution is developed for a synthetic problem of saltwater intrusion through a cavity. We consider an idealized rectangular cavity in which freshwater enters with a constant flux rate \(Q \) from the left boundary. A hydrostatic pressure is prescribed along the right boundary where the concentration is fixed to salt-water concentration. The top and the bottom of the domain are impermeable boundaries. The saltwater intrudes from the right until an equilibrium with the injected freshwater is reached. The Stokes equations (3)-(4) are written in the following form:

\[
\begin{aligned}
\frac{-\partial P}{\partial x} + \mu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial z^2} \right) &= 0 \\
\frac{-\partial P}{\partial z} + \mu \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial z^2} \right) &= f \\
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial z} &= 0
\end{aligned}
\]

(21)

where the body forces \(f \) can be written using (6) in the following form,

\[
f = \left[\rho_0 + (\rho_1 - \rho_0)C \right] g
\]

(22)

The last equation in (21) implies the existence of a stream function \(\phi \), such as:

\[
u = -\frac{\partial \phi}{\partial x}
\]

(23)

Inserting (23) into (21) leads to:

\[
\mu \left[\frac{\partial^4 \phi}{\partial x^4} + 2 \frac{\partial^4 \phi}{\partial x^2 \partial z^2} + \frac{\partial^4 \phi}{\partial z^4} \right] = -\left(\rho_1 - \rho_0 \right) g \frac{\partial C}{\partial z}
\]

(24)

As in [16, 38], we define the following new variables:

\[x' = x/d, \quad z' = z/d, \quad u' = u d/Q, \quad v' = v d/Q, \quad u' = \partial \psi' / \partial z', \quad v' = -\partial \psi' / \partial x', \quad \psi = \psi' - z' \]

(25)

where \(x' \) and \(z' \) are non-dimensional coordinates, \(u' \) and \(v' \) are the non-dimensional velocities and \(\psi' \) the non dimensional stream function.

Using (25), eq (24) leads to:
\[a \left(\frac{\partial^4 \psi}{\partial x^4} + 2 \frac{\partial^3 \psi}{\partial x^2 \partial z^2} + \frac{\partial^4 \psi}{\partial z^4} \right) = - \left(\frac{\partial C}{\partial x} + \frac{1}{\xi} \right) \]

(26)

with \(a = \frac{\mu Q}{(\rho_1 - \rho_0)gd^3} \) and \(\xi = \frac{L}{d} \) the aspect ratio of the domain, where \(L \) is the length and \(d \) is the depth of the domain.

Similarly, the change of variables applied to the mass transport equation (5) (see [16, 38] for details) leads to:

\[b \left(\frac{\partial^2 C}{\partial x^2} + \frac{\partial^2 C}{\partial z^2} \right) = \frac{\partial \psi}{\partial z} \frac{\partial C}{\partial z} - \frac{\partial \psi}{\partial \xi} \frac{\partial C}{\partial \xi} + \frac{1}{\xi} \frac{\partial \psi}{\partial \xi} + \frac{1}{\xi} \]

(27)

with \(b = \frac{D}{Q} \) and \(C \) is now the non-dimensional concentration.

The stream function and the concentration are represented by double Fourier series of the form:

\[\psi = \sum_{m=1}^{\infty} \sum_{n=0}^{\infty} A_{m,n} \sin(m\pi x) \cos(n\pi \frac{x}{\xi}) \]

(28)

\[C = \sum_{r=0}^{\infty} \sum_{s=1}^{\infty} B_{r,s} \cos(r\pi x) \sin(s\pi \frac{x}{\xi}) \]

(29)

Substituting these relations into equations (26) and (27), multiplying equation (26) by \(4 \sin(g\pi x)\cos(h\pi \frac{x}{\xi}) \) and equation (27) by \(4 \cos(g\pi x)\sin(h\pi \frac{x}{\xi}) \), and integrating over the rectangular domain gives an infinite set of algebraic equations for \(A_{g,h} \) and \(B_{g,h} \) namely,

\[\varepsilon_2 a^4 A_{g,h} \left(g^2 + \frac{h^2}{\xi^2} \right)^2 \xi = \sum_{r=0}^{\infty} B_{r,h} hN(g,r) + \frac{4}{\pi} W(g,h) \]

(30)

\[\varepsilon b^2 B_{g,h} \left(g^2 + \frac{h^2}{\xi^2} \right) \xi = \sum_{n=0}^{\infty} A_{g,n} gN(h,n) + \varepsilon_1 \sum_{s=1}^{\infty} B_{n,s} SN(h,s) + Quad + \frac{4}{\pi} W(h,g) \]

(31)

Details about the parameters \(\varepsilon_1, \varepsilon_2, N, W, Quad \), can be found in [16].

5.2 Validation of the numerical model

We consider a synthetic example where the domain is discretized with a regular triangular mesh of 3200 elements. The flux at the left (inland) boundary is \(Q = 0.92 m^2 s^{-1} \) and the diffusion coefficient is set to \(D = 0.046 m^2 s^{-1} \), the densities of freshwater (at the left boundary) and saltwater (at the right boundary) are respectively \(\rho_0 = 1000 kg m^{-3} \) and \(\rho_1 = 1015 kg m^{-3} \). To avoid very small values of the parameter \(a \) for which, we cannot obtain a converged semi-analytical solution, the viscosity is set to \(\mu = 1 Pa s \) in this synthetic problem. The corresponding parameters for the analytical solution are \(a = \frac{\mu Q}{(\rho_1 - \rho_0)gd^3} = 0.006 \) and \(b = \frac{D}{Q} = 0.05 \).

To reduce these oscillations, the semi analytical solution is performed with a new truncation using 424 coefficients of the Fourier series with 214 terms \((A_{1,7,0,30}) \) for the expansion of the
stream function and 210 terms \(B_{0,6,1,30} \) for the expansion of the concentration. A good agreement is observed between the semi-analytical and numerical results in this case (Figure 1). These results demonstrate the validity of the numerical model. The developed analytical solution can be used for the validation of other numerical codes.

Figure 1: Semi-analytical (dashed lines) and numerical isochlors (solid lines) and numerical velocity field for the saltwater intrusion problem through a cavity. The semi-analytical solution is calculated using a truncation based on 424 coefficients for the double Fourier series.

6. CONCLUSION

In this manuscript, we developed an efficient numerical model to simulate transport of saltwater through cavities or fractures. In this case, the flow equations and the solute transport equations are coupled by the state equations linking density variations to mass fraction. The model is developed for a general triangular mesh and uses the CR finite elements for the flow discretization, the DG method for advection and the symmetric MPFA method for diffusion. The developed model is used for the simulation of a synthetic problem of saltwater intrusion through a cavity. This problem is adapted from the saltwater intrusion problem of Henry [16], by replacing the confined aquifer by a cavity. The semi-analytical solution is developed for this problem by expanding the stream function and the concentration in double Fourier series. The algebraic equations are then solved using the Levenberg-Marquardt algorithm [39]. The analytical solution is developed for a new truncation (424 terms). With the new truncation, the unphysical oscillations are reduced for the semi-analytical solution and a good agreement is observed with the numerical solution.
References

[34] D.N. Arnold, On nonconforming linear-constant elements for some variants of the Stokes equations, presenta dal s.c. Franco Brezzi nella seduta del 24-6-93.

