AN UNFITTED METHOD FOR TWO-PHASE FLOW IN FRACTURED POROUS MEDIA

A. Fumagalli* and A. Scotti*

* Politecnico di Milano
Department of Mathematics, MOX
Piazza Leonardo da Vinci 32, 20133 Milano, Italy.
e-mail: alessio.fumagalli@mail.polimi.it, anna.scotti@mail.polimi.it

Key words: Two-phase flow, reduced models, fractured porous media, XFEM

Summary. We propose an efficient computational method to simulate two-phase flow in fractured porous media. Instead of refining the grid to capture the flow along the faults or fractures, we represent them as immersed interfaces with reduced model for the flow and suitable coupling conditions. We allow for non matching grids between the porous matrix and the fracture to increase the flexibility of the method in realistic cases. We employ the extended finite element method for the Darcy problem and a finite volume method for the saturation equation, with a numerical flux that yields the correct entropy solution in the case of discontinuous flux function at the interface between the fracture and the porous matrix.

1 Introduction

It has been observed that fractures and faults can act as conduits or barriers for the flow. The effect of fractures on the flow is important in many different applications such as the study of fractured aquifers, geothermal fields, hydrocarbon reservoirs and unconventional sources. A relevant application that requires an accurate characterization of the faults from the geo-mechanical and hydrodynamic point of view is CO₂ storage, see [9]. At injection conditions, CO₂ is buoyant relative to the ambient groundwater, so it rises toward the top of the formation and, in the presence of a pre-existing well or fracture, or the activation of a fault, can leak into shallow formations. At basin scale the mesh refinement needed to capture the effect of faults and fractures, whose typical width is of the order of 1 meter, leads to an extremely high computational cost. One possibility to address this problem is to use a reduced model to represent the flow in fractures, represented as immersed interfaces coupled with the rest of the porous medium. A reduced model was first introduced by Alboin et al., [1], and later extended by Martin et al., [10] and Angot, [2]. In [5] this approach is further extended to allow for non-matching grids between the porous medium and the fracture thanks to the use of the extended finite element method.
(XFEM). Removing the constraint of mesh conformity can be convenient in realistic cases with numerous and complex fractures. An advantage of a non-matching method is the possibility to run multiple simulations with different fractures configuration, in the case of uncertainty on geophysical parameters or multiple scenario analyses, without meshing the domain each time. In this paper we present an original numerical approximation strategy for two-phase flow in fractured media. We complement the Darcy problem, approximated as in [5], with a hyperbolic equation for the saturation of one of the two phases. We adapt the reduced model for two-phase flow presented in [8] to the case of negligible capillary effects and propose a finite volume scheme that is able to account for the matrix-fracture interaction and the cut elements in the non-conforming case. The faults and the porous matrix are characterized by different absolute and relative permeabilities, resulting in a flux function for the saturation equation which is discontinuous in space. Numerical schemes that yield the correct entropy solution in this case are required to obtain the physical solution. Some synthetic cases are presented to test the behaviour of the method with different configurations, i.e. in the presence of impermeable or open faults.

2 Mathematical model

We consider two distinct and immiscible fluid phases, denoted by the subscript $\alpha \in \{w, n\}$ for the wetting and non-wetting phase respectively, flowing in a highly heterogeneous porous medium crossed by fractures. The latter can be characterized by data, e.g. permeabilities, that differs significantly from the porous matrix. We neglect the effect of capillary pressure.

Let us consider a regular domain $\Omega \in \mathbb{R}^n$, $n = 2$ or 3, with boundary $\Gamma = \Gamma_N \cup \Gamma_D$, $\Gamma_N \neq \emptyset$, and outward unit normal n_Γ, cut by a thin region $\Omega_f \subset \Omega$ of thickness d representing the fracture. Let us set, from now on, $i \in \{1, 2, f\}$ and $j \in \{1, 2\}$. Figure 1 represents the partition $\Omega = \bigcup_i \Omega_i$ into three disjoint subsets of Ω. $\gamma_j \in \mathbb{R}^{n-1}$ is the interface between Ω_j and Ω_f with unit normal n_j, pointing outwards with respect to Ω_j. We introduce the interval of time $\mathcal{I}_T := (0, T)$, divided into N subintervals $\mathcal{I}_T^m := (t^m, t^{m+1})$, with $\Delta t^m = |\mathcal{I}_T^m|$, such that $\mathcal{I}_T = \bigcup_m \mathcal{I}_T^m$ for $m \in \{0, \ldots, N\}$. The space-time domains are thus defined as $Q_i := \Omega_i \times \mathcal{I}_T$. The two-phase system of equations in the fractional flow formulation [4, 8], which describes the evolution of the total velocity u, the global pressure
We impose to (3) following [8, 7], we present a reduced model for (2) and (3), replacing the region \(\Omega_f \) with a reduced model for the two-phase flow. Given a scalar or vector function \(\alpha : \Omega \rightarrow \mathbb{R}^q \), \(q = 1 \) or \(n \), let us define

\[
[a] := a_1 - a_2 \quad \text{and} \quad \{a\} := \frac{a_1 + a_2}{2} \quad \text{with} \quad a_j(x) := \lim_{\epsilon \to 0^+} a(x - \epsilon n).
\]

where the subscripts \(i \) and \(j \) denote the restriction of the variables to \(Q_i \) or \(\gamma_j \), respectively. Furthermore

\[
\lambda_i := \frac{k_i^n}{\mu} + \frac{k_i^w}{\mu} \quad \text{and} \quad G_i := \frac{k_i^w \rho^w / \mu^w + k_i^n \rho^n / \mu^n}{\lambda_i} \quad \text{for} \quad i = 1, \ldots, n.
\]

Here \(K_i \) denotes the absolute permeability tensor which is symmetric and positive definite and \(\Phi_i \) is the porosity. For each phase \(\alpha \), \(k^\alpha \) is the relative permeability, \(\rho^\alpha \) the density and \(\mu^\alpha \) the dynamic viscosity. Finally \(g \) is the gravity acceleration vector. The relative permeabilities are non-linear functions of the saturation [3]. Using an IMPES type approach [4] to solve (1) we decouple the first two equations, called pressure equations, from the last two, called saturation equations, and we solve them in sequence at each time step \(T_m \). Hence the pressure equations, with fixed saturation \(S \) at \(T_m \), are

\[
\begin{align*}
\nabla \cdot u_i &= 0 \\
u_i &= -\lambda_i K_i (n p_i - G_i) \\
\Phi_i \frac{\partial S_i}{\partial T} + \nabla \cdot v_i &= 0 \\
v_i &= f_i u_i + b_i K_i g
\end{align*}
\]

\[
\text{in } \Omega_i \times T_{m+1}, \quad \text{with} \quad \begin{cases}
{\nabla \cdot n_j = u_f \cdot n_j} \\
p_j = p_f
\end{cases} \quad \text{on } \gamma_j \times T_{m+1}.
\]

We impose to (2) \(p_i = \bar{p}_i \) on \(\Gamma_N \) and \(u_i \cdot n_T = \bar{v}_i \) on \(\Gamma_D \) as boundary conditions. The saturation equations, with the computed total velocity \(u_i \) at time \(T_{m+1} \), read

\[
\begin{align*}
\Phi_i \frac{\partial S_i}{\partial T} + \nabla \cdot v_i &= 0 \\
v_i &= f_i u_i + b_i K_i g
\end{align*}
\]

\[
\text{in } \Omega_i \times T_{m+1}, \quad \text{with} \quad \begin{cases}
v_j = v_f \cdot n_j \quad \text{on } \gamma_j \times T_{m+1}.
\end{cases}
\]

We impose to (3) \(S_i = \bar{S}_i \) on \(\Gamma_N \) and \(v_i \cdot n_T = \bar{v}_i \) on \(\Gamma_D \) and \(S_i = S_i^0 \) in \(\Omega_i \times \{0\} \) as the initial condition.

3 Reduced model for the two-phase flow

Following [8, 7], we present a reduced model for (2) and (3), replacing the region \(\Omega_f \) with a \(n-1 \) dimensional interface \(\gamma \approx \gamma_j \) with unit normal \(n \approx n_1 \approx -n_2 \), as shown in Figure 2. We report the main results for readers convenience. Given a scalar or vector function \(a : \Omega \rightarrow \mathbb{R}^q \), \(q = 1 \) or \(n \), let us define
We introduce the projection matrix \(N := \mathbf{n} \otimes \mathbf{n} \) so that, given \(e : \Omega \to \mathbb{R} \) and \(c : \Omega \to \mathbb{R}^n \)

\[
\nabla_\tau e := \nabla e - N \nabla e \quad \text{and} \quad \nabla_\tau c := \nabla c - N : \nabla c.
\]

We indicate with \(\hat{\cdot} \) the reduced variables defined on \(\gamma \). The scalar unknowns \(\hat{p} \) and \(\hat{S} \) represent the averaged values across normal sections of \(\Omega_f \) while the vector unknowns \(\hat{u} \) and \(\hat{v} \) are the tangential fluxes integrated over the normal sections of \(\Omega_f \). The properties of the fracture are averaged over each cross sections of \(\Omega_f \) or assumed to be invariant in the normal direction. We assume that \(K_f = K_{f,n} N + K_{f,\tau} (I - N) \), and defining \(\hat{\eta} := d/(\lambda_f K_{f,\tau}) \), equation (2) can be written as

\[
\left\{ \begin{aligned}
\nabla \cdot u_j &= 0 \\
u_j &= -\lambda_j K_j (\nabla p_j - G_j)
\end{aligned} \right. \quad \text{in } \Omega_j \times \mathcal{T}_h^{m+1},
\]

\[
\left\{ \begin{aligned}
\nabla_\tau \cdot \hat{u} &= \mathbb{[}u \cdot n\mathbb{]}_\gamma \\
\hat{\eta} \hat{u} + \nabla_\tau \hat{p} &= \hat{G}
\end{aligned} \right. \quad \text{in } \gamma \times \mathcal{T}_h^{m+1},
\]

(4)

where \(\hat{G} \) is the tangential component of \(G \) integrated over each normal section of \(\Omega_f \). Introducing a shape parameter \(\xi_0 \in (0, 0.25] \) and \(\eta_\gamma := (d\lambda_f K_{f,\tau})^{-1} \), the coupling conditions can be written as

\[
\left\{ \begin{aligned}
\xi_0 \eta_\gamma \mathbb{[}u \cdot n\mathbb{]}_\gamma + \frac{d}{4} \mathbb{[}G \cdot n\mathbb{]}_\gamma &= \mathbb{[}p\mathbb{]}_\gamma - \hat{p} \\
\eta_\gamma \mathbb{[}u \cdot n\mathbb{]}_\gamma &= \mathbb{[}p\mathbb{]}_\gamma + d \mathbb{[}G \cdot n\mathbb{]}_\gamma
\end{aligned} \right. \quad \text{on } \gamma \times \mathcal{T}_h^{m+1}.
\]

Similarly to (2) the reduced equations for (3) become

\[
\left\{ \begin{aligned}
\Phi_j \frac{\partial \hat{S}_j}{\partial t} + \nabla \cdot \hat{v}_j &= 0 \\
\hat{v}_j &= f_j \hat{u}_j + b_j K_j \hat{g}
\end{aligned} \right. \quad \text{in } \Omega_j \times \mathcal{T}_h^{m+1},
\]

\[
\left\{ \begin{aligned}
d\Phi_f \frac{\partial \hat{S}}{\partial t} + \nabla_\tau \cdot \hat{v} &= \mathbb{[}v \cdot n\mathbb{]}_\gamma \\
\hat{v} &= f_f \hat{u} + b_f K_{f,\tau} \hat{g}
\end{aligned} \right. \quad \text{in } \gamma \times \mathcal{T}_h^{m+1},
\]

(5)

where \(\hat{g} \) is the tangential component of \(g \) integrated over each normal section of \(\Omega_f \). The coupling condition becomes

\[
\hat{v}_j(S_j) \cdot n_j = v_{f,j}(\hat{S}) \cdot n_j \quad \text{on } \gamma, \quad \text{with } v_{f,j}(\hat{S}) := f_f(\hat{S}) \hat{u}_j + b_f(\hat{S}) K_{f,n} N g.
\]

4 Numerical approximation of the two-phase Darcy problem

The Darcy problem (2) is solved in mixed form, with the lowest order Raviart-Thomas finite elements enriched in the cut elements as proposed in [5, 6]. The choice of mixed finite elements guarantees a locally conservative velocity field for the subsequent solution of the saturation equation (3), which is carried out with the finite volumes method in the porous medium and in the fracture.

Let \(\mathcal{T}_h \) be the triangulation of the domain \(\Omega \) split into \(\mathcal{T}_h = \mathcal{U}_h \cup \mathcal{C}_h \) with \(\mathcal{U}_h \) the set of uncut elements and \(\mathcal{C}_h \) the set of cut elements, and let \(\mathcal{T}_h^f \) be the mesh of the fracture. The approximate solution \(S_h, \hat{S}_h \) for the saturation in the porous medium and in the fracture is sought in the following spaces

\[4\]
\[Q_h := Q_{1,h} \times Q_{2,h} \quad \text{with} \quad Q_{j,h} := \left\{ \varphi_h \in L^2(\Omega_j) : \varphi_h|_{K \cap \Omega_j} \in \mathbb{P}_0(K \cap \Omega_j), K \in T_h \right\}, \]
\[\hat{Q}_h := \left\{ \hat{\varphi}_h \in L^2(\gamma) : \hat{\varphi}_h|_{\hat{K}} \in \mathbb{P}_0(\hat{K}), \hat{K} \in \hat{T}_h \right\}. \]

The finite volume approximation of (5) reads, in the case of uncut elements
\[\int_K \phi \frac{S_{h}^{m+1} - S_{h}^{m}}{\Delta t} \, dx + \int_{\partial K} \mathbf{v} \cdot \mathbf{n}_K(S_{h}^{m}) \, ds = 0 \quad \text{for } K \in \mathcal{U}_h, \]
where \(\mathbf{v} \cdot \mathbf{n}_K \) is a suitable numerical flux and \(\mathbf{n}_K \) is the outward unit normal to \(\partial K \). In the cut elements the method has to be modified to account for the cut edges and for the presence of the fracture, yielding, for all \(K \in \mathcal{C}_h \)
\[\int_{K \cap \Omega_j} \phi \frac{S_{h}^{m+1} - S_{h}^{m}}{\Delta t} \, dx + \int_{\partial K \cap \Omega_j} \mathbf{v} \cdot \mathbf{n}_K(S_{h}^{m}) \, ds + \int_{\gamma \cap K} (\mathbf{v} \cdot \mathbf{n}(S_{h}^{m}, \mathcal{M}(\hat{S}_{h}^{m}))) = 0, \]
where \(\mathcal{M}(\hat{S}_{h}^{m}) \) is the interpolation of \(\hat{S}_{h}^{m} \) on \(T_h \). The two meshes are indeed, in general, genuinely non-matching as shown in Figure 3. The discrete problem in the fracture reads, for every \(\hat{K} \in \hat{T}_h \)
\[\int_{K \cap \Omega_j} \phi \frac{S_{h}^{m+1} - S_{h}^{m}}{\Delta t} \, dx + \int_{\partial K \cap \Omega_j} \mathbf{v} \cdot \mathbf{n}_K(S_{h}^{m}) \, ds - \sum_{j=1,2} \int_{\gamma \cap K} (\mathbf{v} \cdot \mathbf{n}(S_{h}^{m}, \mathcal{M}(\hat{S}_{h}^{m}))) = 0. \]
Here the operator \(\mathcal{M}^* \) performs the interpolation from \(T_h \) to \(\hat{T}_h \). To obtain a conservative method we represent the operators \(\mathcal{M} \) and \(\mathcal{M}^* \) with a matrix and its transpose respectively.

![Figure 3: Sketch of \(T_h \) cut by \(\gamma \). The mesh of \(\gamma \) is in general non-matching with the edges of the cut elements.](image)

The choice of the numerical flux is critical in problems characterized, like the one of our interest, by a discontinuous flux function due to the presence of different rock types (typically the matrix and the fracture). We adopt the exact Godunov flux which, at the expense of a higher computational cost, satisfies the entropy condition and gives the physically correct solution, see [11] for further details.
5 Test Cases

We present two examples to highlight the potentiality and advantages of the proposed method. The first one deals with the effect of the fracture permeability and tests mass conservation for a flow driven only by gravity, while the second presents a coupled simulation with the IMPES splitting.

5.1 Flow driven by gravity

Let us consider a flow driven by gravity, i.e. \(u_j \equiv \hat{u} \equiv 0 \), in a square domain \(\Omega = (0, 1)^2 \) cut by fracture \(\gamma = \{(x, y) \in \Omega : y = -2x + 1.4\} \), where we set the initial saturation \(S_0 \) to 0.5 in the circle \((x - 0.45)^2 + (y - 0.15)^2 < 0.016\). The properties of the fluid and the media are reported in Table 5. In Figure 6 we compare three simulations characterized by different types of fracture. In the first one the problem is solved without the fracture \(\gamma \) in the domain. We notice that the non-wetting fluid moves upwards due to buoyancy. In the second one we insert the fracture \(\gamma \) with the same absolute permeability of the medium. In this case the fracture acts as if it did not exists, indeed the result is very similar to the first simulation. Finally in the third one the fracture has the same normal permeability as the bulk, but the tangential permeability is twenty times higher. When the light fluid reaches \(\gamma \) the flow inside the fracture is faster and the saturation is transported upwards more rapidly.

We verified numerically that the method is conservative. The graph in Figure 4 compares, for the third simulation, the mass present in the domain and the cumulative outflow with the initial mass \(m_0 \). We see a perfect conservation of mass until the outflow boundary is reached, i.e. after \(\sim 4000 \) time steps. From that time on there are only very small oscillations of about \(10^{-5}\% \).

5.2 Fully coupled two-phase flow

In this example we consider the complete two-phase flow model (4) and (5) in an horizontal plane, i.e. without gravity. We set as the initial condition \(S_0 = 1 \) in the circle \((x-0.45)^2 + (y-0.15)^2 < 0.016\).
Figure 6: Snapshots of the solution at $t \simeq 1$ in three different cases: on the left S_h without fractures, in the centre S_h and \hat{S}_h with γ whose properties are equal to the bulk medium and on the right with γ more conductive in the tangential direction. Here \hat{S}_h is warped for the sake of visualization.

$(y - 0.15)^2 < 0.016$. The permeabilities in the fracture are $K_{f,\tau} = 1$ and $K_{f,n} = 10^{-3}$ while the rest of the data are the same as in the previous test case, see Table 5.

Figure 7 compares the evolution of saturation obtained with a constant velocity field with the result of the fully coupled two-phase problem. We notice that even if the solutions look similar in the beginning the real velocity field changes in time and after some time the difference between the two solutions becomes more noticeable.

6 Conclusions

Future works should focus on the extension of the method to cases with more complex geometries (multiple and intersecting fractures) and realistic values of the parameters, as well as on the inclusion of the capillary term. In both the examples we presented the CFL condition turned out to be a severe constraint the presence of small sub-elements in the cut region of the mesh: suitable numerical techniques to overcome this limitation will be the subject of future study.
REFERENCES

